
Html template system

using java annotations

Peter Speck

Supervisor: Bo Holst-Christensen

Computer Science, module 1, 2007

Roskilde University

Abstract
The problems that motivate this project are to (1) solve the lack of separation between html
templates and java code when using existing template systems (e.g. embedded language or
macros), to (2) solve the lack of scoped declaration of macros and java variables inside
template loops, and (3) to solve the lack of validation of template macro definitions at
compile time to help finding bugs before the web applications are deployed.

Annotations are used as metadata format for specification of the dynamic parts of the
html template and 74 annotations are designed for the template system. The html templates
don’t contain embedded macros and are fully valid html files without any special tags or
attributes, and well suited for editing in visual editors. An annotation-based template
compiler and runtime are implemented and tested.

Strict type checking is performed by the template compiler when it processes the an-
notations. The compiler generates java source files which enables IDEs to show usages of
template macro implementations, i.e. servlet methods and fields.

The system provides template looping constructs by using Iterators and automatically
instantiating the appropriate inner class for each object returned by the iterator. The inner
classes provide scoping for temporary variables used by the loops to avoid polluting the
global servlet scope with temporary variables.

Tests of annotations as specification format show that the new system provides very
concise specifications for common web implementation design patterns and makes servlets
easier to maintain.

Dansk abstrakt
Projektets mål er (1) at løse problemet med manglende separation mellem html-skabeloner
og java-kode ved anvendelse af eksisterende systemer (f.eks. indlejrede sprog eller makroer),
(2) at løse problemet med at definitioner af makroer og java variabler ikke er afgrænset i
skabelonløkker, og (3) at løse problemet med manglende validering af skabelonmakroer p̊a
oversættertidspunktet, s̊a fejl ikke først findes, n̊ar web-applikationen sættes i produktion.

Java-annotationer anvendes som meta-data format til specifikation af de dynamiske dele
af html-skabelonen. Der designes 74 annotationer til det nye system, og der implementeres
og testes en oversætter samt runtime hertil. Skabelonerne er fuldt valide html-dokumenter
uden makro-referencer, specielle tags eller attributter og er derfor specielt velegnet til
visuelle redigeringsværktøjer.

Makroerne type-checkes ved oversættelse af skabelonerne, og der genereres java kilde-
kode, som gør det muligt for IDE-værktøjer at vise hvilke makro-definitioner, som anvendes
af skabelonerne og hvilke, der ikke (længere) anvendes.

Tests af annotationer som metadata format viser, at det nye skabelonsystem giver mulig-
hed for korte og præcise specifikationer af typiske web-implementationers ‘design patterns’
og at det gør det nemmere at vedligeholde servlets.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Method . 2
1.4 Scope . 2
1.5 Summary . 3

2 Previous work and solutions 4
2.1 The early days . 4
2.2 Contemporary macro-based systems . 5
2.3 DOM-based template systems . 6
2.4 A ‘prototype’: my third template system . 7
2.5 Generated code versus reflection at runtime 11
2.6 Requirements . 12
2.7 Conclusion . 14

3 Annotations: Embedding structured metadata 15
3.1 Using comments . 15
3.2 The annotation type . 16
3.3 An example . 16
3.4 Runtime access . 17
3.5 Lists . 18
3.6 The non-null problem . 18
3.7 Template specification example . 18
3.8 Conclusion . 19

4 Design of template annotations 20
4.1 Targeting html elements . 20
4.2 Annotation reference . 21
4.3 Template options . 23
4.4 Generated element content . 23
4.5 Simple attributes . 24
4.6 Attribute collections . 25
4.7 Sub-attributes . 25
4.8 Conditionals . 26
4.9 Simple loops . 27
4.10 Scoping . 27
4.11 Advanced loops . 28

ii

4.12 Miscellaneous annotations . 28
4.13 Build system . 28
4.14 Summary . 29

5 Test of the design 30
5.1 Element content . 31
5.2 Conditionals . 32
5.3 Attributes . 34
5.4 Simple loops . 35
5.5 Complex loop using scope . 37
5.6 Specification of templates . 39
5.7 Conclusion . 40

6 The compiler 41
6.1 Introduction . 41
6.2 Phases . 42
6.3 Loading the compiled servlet class, phase 1 43
6.4 Parsing the html template, phase 2 . 43
6.5 Scopes, phase 3 . 44
6.6 Code generation, phase 4 . 46
6.7 The generated output . 47
6.8 Serializing generated java source, phase 6 50
6.9 Conclusion . 50

7 Implementation test 51
7.1 System tests versus unit tests . 51
7.2 Limitations of testing . 51
7.3 Writing tests . 52
7.4 Conclusion . 53

8 Conclusion 54
8.1 Further work . 55

A The P-code format 57
A.1 Opcode enum . 57
A.2 Opcode execution . 58
A.3 Opcode description . 58
A.4 Opcode example . 59
A.5 Saving pcode . 60

B System test example 61

Bibliography 63

Source code 64

iii

Chapter 1

Introduction

This project is about an html template system for java. The difference to the exuberance
of existing systems is the use of java annotations to specify variable items in the template,
the complete separation of the template from the java code and the use of a compiler to
improve maintainability by supporting strict type checking.

The basic structure of information flow in a typical html template system is illustrated
below. The system uses input from the template and from the servlet to generate the
output. Some template systems have a more complex structure due to e.g. ability to call
back into the servlet, embedded language in the template, or a compilation stage.

servlet java class
--
_ _ _�

�

�

�
_ _ _
template

system
// html output

html template file
11

1.1 Motivation

The compiler implements the 4th template system which I have developed and thus builds
on a history of experience and convictions. The major motivation behind the first 2 systems
(one written in perl and the other in java) is to get the verbose html out of the program
code as it obstructed the code clarity.

The first system uses macro-based replacements which supports optional arguments.
The second system uses embedded program code for substitutions, assignments and con-
ditionals. The two systems make it easier to create small and very simple pages and even
though they covered the needs at the time, they can’t handle the demands of modern web
applications. One major problem is that webdesign is no longer created by programmers
but by dedicated web designers who seldom have any programming background and there-
fore have difficulty editing templates which contain embedded programming code. Another
major problem is that they don’t scale in web application complexity as the embedded lan-
guage is dynamic with variables defined in #include’d files and by a complex definition of
variable and callback functions created by the servlets inheritance hierarchy. For complex
sites, it is very difficult to determine if a variable or callback is used by anything and which
role it has for the templates.

The 3rd system tries to solve these problems and comes pretty close: The html template
is a completely valid html file with no special tags or attributes and it can contain mockup
data. However, the specification of dynamic parts (i.e. the ‘api’ between the template
and java) is made in xml, thus creating another file which has to be modified whenever

1

CHAPTER 1. INTRODUCTION 2

functionality is added/removed/changed in the template and the servlet. This makes it
easy to build new pages, however, maintaining pages are more problematic as it is a manual
process to determine which specifications in the xml are affected when a java method is
deleted or parts of the html template is removed/changed.

1.2 Objectives

The aim of the 4th system—this project—is to create an improved system which doesn’t
have the 3rd systems’ maintenance burden: The dynamic parts of the html templates are
specified using java annotations instead of external xml files.

This report seeks to answer the following two questions:

Are java annotations a suitable replacement for specifying the variable parts of
the html templates?

Which advantages and disadvantages does such a system have compared to the
xml-based system?

1.3 Method

The structure of this report closely follows the method for answering the questions.
Chapter 2 describes the previous template systems to extract the experience from them.

The purpose is to provide a requirement specification for the design of the 4th system. The
rest of the report is split into two parts: the first part designs the annotations (chapter 4) and
tests the design (chapter 5) by using it to implement common design patterns in template
usage. The second part describes the implementation of the compiler (chapter 6) and tests
the implementation (chapter 7). Finally, chapter 8 concludes on the main questions posed
above and provides suggestions for further work to improve the template system.

Although the structure of the report makes it seem like the system was developed using
the waterfall model, the complete history of the template systems points to the iterative
model employed at non-static requirements since the requirements changed as a consequence
of being able to build even bigger and more complex systems. If a waterfall model had
worked, the 3rd system would have been perfect from the start and not prompting the urge
to create an improved system.

1.4 Scope

Some interesting areas have to be considered being outside the scope of this report as space
and time for this project are limited.

The reader is assumed to have a basic knowledge of html and template systems, and to
be very familiar with java. A terse introduction to annotations is provided in chapter 3,
however, it should be considered a summarization rather than an introduction.

Furthermore, code snippets are presented as illustrative material and not as working
or complete code. Access modifiers, throws clauses, generic<> type markers and all non-
essential lines of code have been omitted. The report doesn’t contain Javadoc api documen-
tation as the aim is to keep a more high-level view of the system. It tries to describe the
forest instead of a number of trees: The forest is a different concept than the sum of detailed
descriptions of each tree. However, the source for the system is listed in the appendix but

CHAPTER 1. INTRODUCTION 3

without any low-level documentation (such as Javadoc) or comments—listed as an item in
“further work”—which is needed for releasing the template system to the public.

Only the implementation of the compiler is described, whereas the build system and
the two 3rd party libraries (JTidy and JUnit) are omitted. The runtime system—including
dynamically recompiling templates—is not described beyond what’s needed to describe the
output of the compiler.

1.5 Summary

A template compiler and a runtime for processing the compiled templates is implemented
and tested. The sources are provided in the appendix.

This report provides a requirement specification based on previous work, the design of
annotations for describing the variable parts of an html template, a high-level description
of the implementation, the testing of it, and a conclusion based on the two questions which
this report seeks to answer.

Chapter 2

Previous work and solutions

The purpose of this chapter is to provide a set of requirements for the template system by
describing previous template systems.

2.1 The early days

Suppose we had the task of generating the following snippet of html where the logo url and
the name of the user are variable and the rest is static:

L1 <div>

You’re logged in as Valentin Silvestrov.

</div>

Early html pages were rather simple and as perl was very often used for creating web pages,
all of the above html code was often included directly in the perl program, .e.g.

L2 print <<"END";
<div>

You’re logged in as $firstname $surname.

</div>
END

More complex output was often made by some less template-ish code:

L3 print "<div>\nurl(), "’>
\n",
"You’re logged in as ", $user->firstname(), " ", $user->surname(), ".\n",

"</div>\n";
The need for templates arose when html design became more voluminous and advanced:
The amount of html began to obscure the real code and the design was often transferred
to a web designer who needed to be able to edit the html without being required to have
the skill to edit perl scripts.

This was often solved by extracting most html snippets into external files and by using
magic tags (e.g. @MACRONAME@) to mark text that should be replaced at runtime:

4

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 5

L4 <div>

You’re logged in as @FIRSTNAME@ @SURNAME@

</div>

2.2 Contemporary macro-based systems

The ‘collection of snippets’ method evolved into having the full html page in one file (rather
than a collection of snippets) as the visual html editors never handled partial html files well.
This created the need for more complex templates as sections of the file sometimes needed
to be omitted or needed to be reused several times when presenting dynamic lists of items,
e.g. search results.

To reduce the amount of coding needed for handling variable data beyond simple substi-
tutions most template systems added the ability to include code inside the template. This
is the opposite case of the initial method which had html inside the program. To be able to
use the visual editors with such templates, the editors had to be extended to handle such
embeddings of non-html inside the html files.

The following snippet shows how this is done in JSP.1 Instead of using simple variable
substitution, it provides full java expressions using <%= ...%> tags and at runtime evaluates
the contents and prints the resulting value in place of the tag:

L5 <div>
<img src=’<%= image.getUrl() %>’>

You’re logged in as <%= user.firstname() + ” ” + user.surname() %>.

</div>

To increase performance, many template systems compile the templates so they don’t have
to be parsed at runtime. The above snippet can be translated into the java statements
below, assuming pw is an instance of ava.io.PrintWriter:

L6 pw.print("<div>\n\t<img src=’");
pw.print(image.getUrl());
pw.print("’>
\n\tYou’re logged in as ");
pw.print(user.firstname() + " " + user.surname());
pw.print("\n</div>\n");

2.2.1 Drawbacks

• The special <%= ...%> tags are syntax errors when the html file is validated against
the html standard. Thus the html validator and html tool must be able to recognize
these tags, thereby restricting the set of usable tools.

• The html file contains JSP-tags instead of real data and it is very difficult to provide
placeholder data which enable the designer to judge how the page looks when it is
processed with real data.

The last point is important for web designers. When a browser displays the JSP Document,
it will not be able to display the logo because “<%= image.getUrl() %>” is a non-existing
file name. As the second <%= ...%> tag isn’t a known/valid html tag, most browsers will
ignore it and only display the text “You’re logged in as .”

This has the effect of turning the html file into a piece of code: It is only possible to
visually inspect the layout when the template has been ‘executed’ and the resulting html is

1Java Server Pages, http://java.sun.com/products/jsp/

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 6

displayed by a browser, thus damaging the most important aspect of a visual design tool:
the ability to see the design visually.

This often results in the fact that the designer is not using the templates but a set of
mock-up files which the programmer then has to translate into a template by adding the
JSP tags. Whenever the designer changes the design, the designer either has to work in
blind by editing the JSP file or by changing the mock-up and send it to the programmer
who then has to figure out which modifications have been made since the last version and
then reapply those to the JSP file—an error prone and tedious process.

2.3 DOM-based template systems

Some systems use a model based on DOM2 instead of treating the template as a simple
text file with macro-based substitutions. The systems have one major advantage compared
to the macro-based systems: The html file is editable by most visual html editors as the
templates don’t contain syntax errors due to non-standard tags.

Another advantage is a much larger flexibility for writing libraries which modify docu-
ments (e.g. to make all URLs relative) as the systems provide access to the template thru an
api, whereas macro-based systems either have to put macros everywhere something needs
to be changed at runtime or by post-processing the generated html as a text string.

As the html template doesn’t contain special tags, the primary difference between the
systems is the provided api for modifying the template instance, e.g. how to populate a table
with results from a database query. Some systems use the DOM-api at runtime, whereas
others use a specialized api (and implementation) for performance reasons.

2.3.1 Enhydra xmlc

Enhydra xmlc3 is the first well-known template system that is DOM-based. It uses a DOM

at runtime. The DOM-api provides huge flexibility in modifying the document although
the api is very low-level. The DOM tree is serialized as a java class. After the java class
has created a DOM instance at runtime, the programmer can modify the DOM using a
combination of plain DOM methods and convenience functions provided by xmlc for setting
the text of elements with an id attribute. Finally, the DOM is serialized to a java String
and sent to the browser:

xmlc: html file // DOM // template java class

runtime: template java class // DOM
servlet

modifications
// DOM // serialized html output

XMLC has one very serious drawback: the performance. It has to create the gazil-
lion java objects for representing the DOM and it has to convert those gazillion objects
into a text representation to transmit the document to the browser. My experience of an
Enhydra-based web application4 is that for most pages much more cpu time was used for
the processing of the template than the data retrieval. Furthermore, the access to the sub-
parts of the DOM must be optimized as performance will otherwise suffer when elements
are accessed by their id attribute as a full recursive search of the document tree is very
slow.

2Document Object Model, an api for modifying the object tree in XML and html documents. See
http://www.w3.org/DOM/

3XML Compiler, http://www.enhydra.org/tech/xmlc/
4Old version of http://jobfinder.dk/ which was developed for Ingeniøren A/S

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 7

Enhydra tries to solve the performance problem by using a specialized DOM implemen-
tation which keeps subtrees in a non-expanded format, i.e. serialized text format. However,
this optimization only helps significantly when the document contains large subtrees which
are not accessed at all, i.e. contains no variable data and don’t require any post-processing
to fix e.g. javascript links or image width/height tags.

Another drawback is that Enhydra xmlc doesn’t support dynamical recompilation of the
template, so whenever the template is changed, a xmlc recompilation followed by a javac
compilation is required.

2.3.2 Reasonable Server Faces

Reasonable Server Faces5 (RSF) not only implements the View part of MVC but a web
framework which handles the complete request lifecycle, including object persistence in
databases. The html template contains non-standard rsf:id attributes and it must be
well-formed xml.6 The template will therefore fail strict validation in many html validators.
This is not a major problem as most visual html editors ignore unknown attributes and
keep them as-is. The template system does not provide direct access to the DOM but uses a
specialized interface which only provides modifiability of html elements which have a rsf:id
attribute. The template api in RSF is focused on supporting the JavaBeans programming
model.

Example:

L7 <form action="#" rsf:id="basic-form">
<input type="password" rsf:id="login-password"></input>

</form>

To set the input’s name attribute, the following java method calls are used:7

L8 UIForm form = UIForm.make(notlogged, "basic-form");
UIInput.make(form, "login-user", "#{logon.name}");
// #{logon.name} is a macro for the ‘name’ property in the ‘logon’ bean.

The drawback of the optimization is the change to a non-standard api which is less powerful
than the DOM api. A further drawback compared to Enhydra xmlc is that it is not possible
to validate the rsf:id references at compile time as they are specified as Strings in the
java source and can therefore only be validated at runtime by e.g. manual testing or unit
tests.

2.4 A ‘prototype’: my third template system

This section describes a template system which I created in 20058 because I was not satisfied
with the macro-based template systems nor with the performance of Enhydra xmlc- based
pages and RSF was not widely published nor production-ready until late 2006.9 The reason
why ‘prototype’ is in quotes is that the system was not conceived as a prototype but as ‘the
system’. For this report I will refer to it as the prototype as it has never been given a real

5http://www2.caret.cam.ac.uk/rsfwiki/
6Even though browsers support the syntax for empty elements (e.g. <img.../>), it is not valid html:

http://webkit.org/blog/68/understanding-html-xml-and-xhtml/
7http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=LogonTest 2
8for http://print.ruc.dk and http://faktura.ruc.dk
9RSF Timeline, slide 34,

http://www2.caret.cam.ac.uk/rsfwiki/attach/Presentations/Introducing+RSF+-+31-05-06.ppt

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 8

name and it is the main inspiration behind this project. The system is strongly inspired
by the design of Enhydra xmlc and fixes the performance problem by giving up access to a
DOM api at runtime.

The template system compiles the html file into a java class which calls methods in the
servlet for each dynamic part of the template. The callbacks include simple substitutions,
conditionals and simple sub-tree loops (e.g. for table-rows). The dynamic parts are specified
in an xml document and all specifications target html elements (or their attributes) using
the elements id or class attribute. The specifications are therefore at the DOM level, whereas
the implementation uses pcode (and generated code for the callbacks) similar to a compiled
macro-based format.

specification in xml

++

generated
java class

Compiler:

_ _ _�

�

�

�_ _ _
template

compiler

44

++
html template file

22

pcode

Runtime: servlet oo // generated
java class

oo //
_ _ _�

�

�

�_ _ _
template

runtime
// html output

pcode

66

Short example:

L9 <div>

You’re logged in as John Doe.
<div id=HasPrinters>You have access to at least one printer.</div>

</div>

The xml specification:

L10 <transformations>
<attr-src e=‘LogoImage’/>
<content e=‘PersonFullName’/>
<if e=‘HasPrinters’/>

</transformations>

The children of <transformations> specify how the html file is compiled as they specify
the transformations that are performed on the html document. The name of the child
element specifies the type of transformation. The e attribute specifies which html elements
the transformation applies to: In this example, it specifies the html element’s id attribute.

<attr-src e=’LogoImage’/> specifies that the src attribute of the image is made at run-
time by calling the method printLogoImage() in the servlet (see interface below).

<content e=’PersonFullName’/> specifies that the content of the element (all its DOM

children) is made at runtime by calling the method printPersonFullName() in the
servlet.

<if e=‘HasPrinters’/> specifies that the <div id=HasPrinters> subtree should only be
included if the callback testHasPrinters() returns true.

The template system creates an (inner)interface in the generated java file which the pro-
grammer must implement to provide the functionality for generating the specified output:

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 9

L11 public interface CB { // “CallBack”
void attrSrcLogoImage();
void printPersonFullName();
boolean testHasPrinters();

}

2.4.1 Advantages and drawbacks

+ Like Enhydra xmlc, the system uses clean html template files without any special tags
and is well-suited to visual editors and checking the design in a browser before the java
servlet is implemented. Mockup data are fully supported, however, unlike Enhydra
xmlc they have no runtime overhead as they are omitted at compilation time.

+ The performance is extremly good as the execution of the template is a mixture of sim-
ple interface-based method calls in java and calls to java.io.PrintWriter.print(String).
At runtime nothing has to be resolved as everything is hardcoded in the generated
java class. There is no callback method or variable lookups in e.g. hashtables.

≈ Not having DOM access at runtime seemed a problem in the beginning as I was used
to post-process e.g. <script> and <style> URLs at runtime, but this was resolved
by having the template compiler provide project-specific ability to modify the DOM

after it had loaded the html template and before it was compiled into a java class.

+ The compiled java class provides compile-time check for missing method implemen-
tations in the servlet. This cached a significant number of missing methods when I
implemented new complex web pages—something which would otherwise have to be
found during the testing phase. This feature saves both development and maintenance
time.

– The system uses an extra file (the xml specifications) which (1) must be maintained
whenever the interface between the template and the java code is changed, and (2)
which takes up valuable screen estate when editing the code and html template.
Maintenance is tedious because whenever a dynamic part of the html template is
added/removed/renamed, the corresponding parts of the xml specification have to
be changed. After that change is made, the corresponding java methods have to
be located and modified. The inverse 2-step procedure is necessary when figuring
out what parts of an html template are affected by a java method. Large design
changes often cause extra work to ensure that all obsolete xml specifications and/or
java methods are removed, i.e. ‘manual garbage collection’ of the xml specifications
and java methods.

+ It is possible to change the html template and have it recompiled while the server is
running. This has the effect of making it possible to experiment with the design while
the server is running and seeing how the resulting page will look.
It is not possible to change the xml specification file at runtime as this would add or
remove methods. As the java 1.5 jvm doesn’t support reloading classes with added
or removed methods, a relaunch is required anyway and this makes the needed com-
pilation a relatively small problem.

(–) The system only supports templates stored in the file system and not e.g. in a database.
It is therefore not suitable for e.g. CMS systems which don’t have a static set of
page designs. As I don’t develop this kind of web applications, I consider this an
unimportant negative aspect (for me).

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 10

– No support for java scopes for html-subtree loops. See section below.

2.4.2 Pollution of scope by complex loops

Some html pages display complex tables with information retrieved from e.g. multiple
database queries or java objects. This often results in a lot of temporary variables the
value and definition of which are only relevant when emitting the html subtree for the row.
However, as no support for an inner scope exists, the variables have to be defined as fields
in the java servlet scope together with all other ‘global’ variables for the servlet. A terse
example of a shopping cart:

L12 <h1>Number of items in cart: 10</h1>
<table>

<tr id=ItemRow>
<td id=ItemId>42</td>
<td id=ItemName>Motor</td>
<td id=ItemPrice>100.00</td>

</tr>
</table>

L13 class MyServlet {
PrintWriter pw = . . .; // servlet output
List<Integer> foundItemIds = . . .;
Iterator<Integer> iter = foundItems.iterator();
int itemId;
String itemName;
BigDecimal itemPrice;

void printItemCount() { // the count in the header
pw.print(foundItemIds.size());

}

boolean testHasItemRow() { // while-test for the <tr>
if (!iter.hasNext())

return false;
itemId = iter.next();
itemName = . . .; // e.g. one database query
itemPrice = . . .; // e.g. calculation based on another query
return true;

}

void printItemId() { pw.print(itemId); }
void printItemName() { pw.print(itemName); }
void printItemPrice() { pw.print(UtilityClass.formatPrice(itemPrice)); }

}

In this example, the servlet has the fields itemId, itemName and itemPrice even though
they are only used in the methods which handle the contents of the <tr> subtree. The
‘global’ scope of the servlet is therefore polluted with the temporary variables for the loop.
The pseudo-java code below illustrates an improved version which utilizes java’s block scope
for the 3 variables:

L14 class MyServlet {
PrintWriter pw = . . .; // servlet output
List<Integer> foundItemIds = . . .;

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 11

void printItemCount() { // the count in the header
pw.print(foundItemIds.size());

}

void loopItemRow() { // creates all <tr> rows including content.
for (Integer itemId : foundItems) {

String itemName = . . .;
BigDecimal itemPrice = . . .;
// pseudo-closures:
void printItemId() { pw.print(itemId); }
void printItemName() { pw.print(itemName); }
void printItemPrice() { pw.print(UtilityClass.formatPrice(itemPrice)); }

}
}

}

Unfortunately, I have not been able to create a short textbook example which doesn’t
lead to the obvious objection that an Item class should contain the 3 fields. However, more
complex pages often have rows that need information which does not fit well together for the
rest of the application and the Item class would therefore only be created for the particular
servlet. An improved template system should support this design pattern by reducing the
amount of house-keeping code needed for such loops.

2.5 Generated code versus reflection at runtime

The prototype uses generated java source code (i.e. *.java files) instead of java bytecode (or
reflection at runtime) to access fields and methods in the servlet. The reason is threefold:
Firstly, it is very easy to generate java source. Secondly, I was already in the mindset as
I already implemented another tool the sole purpose of which was to generate java source.
Thirdly, I had already 2 utility classes for writing nicely formatted java source but no
knowledge of libraries for generating bytecode.

In hinsigt, generated java source has some advantages:
1. As the generated source is a java class like all the other java classes the programmer

creates, it enables modern java IDE environments to show which templates refer to a
specific method as it’s a standard “the methods of which refer to this field/method”
dependency display.

2. It provides easy access for the template runtime to fields, methods and innerclasses
in the servlet class. No need for obscure use of reflection.

3. It is faster for the jvm to access fields/methods by direct access instead of using
reflection. However, this speedup is probably insignificant compared to the processing
done in typical servlets.

4. The generated output is human readable and it is thus easier to verify and correct
bugs in the compiler and easier to debug the execution of a template.

5. The output is checked for e.g. access restrictions by the java compiler when it is
compiled into bytecode.

All but the last two advantages are true for bytecode too. However, bytecode is much more
complex to generate and verify by manual inspection.

Using java source has significant disadvantages:

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 12

6. It requires the programmer to compile his own class, then run the template compiler,
and then compile the generated java class. This turns a single-step ‘make’ into a
3-step procedure. This can be automated in modern IDEs and build scripts but is
still an extra overhead. Using bytecode instead of generated source reduces this to a
2-step procedure as the final compile isn’t needed.

7. If the template instance is created using a new XXX() expression, then the template
and the servlet are interdependent. The servlet refers to the template using the new
operator, and the template contains many callbacks to the servlet. If any of those
callbacks are removed from the servlet, the template can’t compile. Consequently, the
template compiler cannot update the template to not refer to those methods. This
problem can be solved by either manually outcommenting most of the generated java
class or by instantiating the template indirectly by e.g. Class.forName().

8. The template compiler has to check access permissions to annotated fields/methods as
they might not be accessible from the package that the generated java source is located
in. If they are inaccessible, the compiler can either generate an error (and forcing the
programmer to make a lot of ‘internal’ fields/methods public) or the template system
can fall back on using reflection to circumvent the access restrictions.

2.6 Requirements

The requirements for the new system are:
1. Clean html
2. No extra files
3. Reasonable performance
4. Design tinkering
5. Support serialized html-fragments
6. Catch bugs as soon as possible
7. Prioritize maintainability
8. Co-existence
9. Scoping for loops

The requirements are described in detail below.

2.6.1 Clean html

The html template must be valid html with no extensions whatsoever—no special tags,
no special attributes. The template must be able to contain mock-up data such as a fake
username and links to sample images. The problem with non-valid html is described in
section 2.2.1 on page 5.

2.6.2 No extra files

No extra files with the specification of dynamic parts. The problem is described in section
2.4.1 on page 9. The specification must be embedded in the java source.

2.6.3 Reasonable performance

No major performance bottlenecks. Performance should be resonable without resorting to
low-level optimizations. Enydra xmlc’s overhead of expanding the template to a full DOM

is not acceptable (see section 2.3.1 on page 6).

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 13

2.6.4 Design tinkering

It must be possible to recompile the template on-the-fly so that a “compile template, compile
server, restart server” time-consuming procedure is avoided (see section 2.4.1 on page 9).
The new system must support the design of the layout both by using the non-processed
template only and by using the processed template.

2.6.5 Support serialized html-fragments

It must allow the servlet to generate html by writing raw html to a java.io.PrintWriter.
Forcing the programmer to expand html fragments into a DOM subtree makes some func-
tionality very tedious to implement, e.g. when html fragments are stored as text in an SQL

database. The programmer has the full responsibility of generating valid html fragments
as the output is not parsed for syntax errors.

I had to hack the DOM-to-textstream conversion in the Enhydra-based web application
so that the content of CDATA10 sections was output as-is without the <![[]]> marker.
This is not an acceptable workaround for getting acceptable performance from a template
system.

2.6.6 Catch bugs as soon as possible

The loose coupling between the template and the code in macro-based systems is (in my
experience) a very common source of bugs due to typing errors and makes maintenance
difficult. Therefore, the system must provide means for validating the use of the template
by the servlet before the web application is deployed to save valuable developer time. Many
developers use unit tests to catch errors, but—as chapter 7 shows—tests which catches all
such errors takes often an extreme amount of time to implement and to run. It is therefore
a huge advantage for a template system to be able to catch such errors at compile time.

An obvious solution is to provide a compiler which performs the validation and enables
faster execution of the template at runtime by using a compiled form (e.g. pcode). However,
the only template systems that I know of which use a separate compiler stage for checking
template references are Enhydra xmlc and my prototype.

As part of the validation, the template compiler must make a warning if:
• the html file uses a non-defined ‘macro’.
• a ‘macro’ is defined but is not used by the html template.

It is a very tedious job to manually check for the above problems and it is too easy to
make spelling or typing errors. To avoid the warnings, it forces a programming approach of
tidiness where deprecated/unused code is cleaned up rather than leaving it as bit rot even
if it (initially) requires more work.

2.6.7 Prioritize maintainability

The main problem with the prototype is the externalization of specifications from the html
and the java code (see section 2.4 on page 7). It is therefore a requirement that the
specifications must be embedded in the java source: No other place is available as external
files are to be avoided and the html template must be pure html.

10A type of DOM node which isn’t valid/used for html documents

CHAPTER 2. PREVIOUS WORK AND SOLUTIONS 14

The system must use either generated java source or bytecode instead of pure reflection
at runtime as the advantages described in section 2.5 on page 11 are considered much more
important than the increased build time.

It is my experience that much more time is spent maintaining (and extending) complex
web applications than is spent on the initial development—an aspect which has largely been
ignored by software development literature ([LST78], [BDKZ93], [BP97]). Assuming this is
a general pattern in development, supporting maintainability is considered more important
than any reduction in initial development time.

Maintainability is often defined in very broad terms like “change effort” ([BDP06],
[LC00]). Html templates are mostly used independently at the source code level (i.e. chang-
ing one template seldom has consequences for the use of other templates) so this report
uses a more narrow definition of what constitutes maintainability:

• concise code, i.e. readability combined with non-verboseness. This means that e.g.
the specifications should not be externalized in a file and they should be as terse
as possible to avoid bloating the java source. The unreadability of ‘html inside java
source’ of early template systems must be avoided.

• it must be easy to predict the consequences of changes, e.g. removing/renaming java
methods and fields. It should moreover be easy to figure out how the java code must
be changed if parts of the html are deleted/modified.

2.6.8 Co-existence

The template system must be able to co-exist with other template systems in the same java
application as I will use the template system for web applications with huge amounts of
code that cannot be migrated/reimplemented within a reasonable time frame. This implies
that the template system must only implement the View-part of MVC and not try to be a
complete web application framework—the template system should be usable by more than
a single framework.

2.6.9 Scoping for loops

The new system must provide some support for scopes in the java servlet so that variables
used inside a loop only are only defined when emitting the html subtree for the loop. This
problem is described in section 2.4.2 on page 10.

2.7 Conclusion

Enhydra xmlc does not meet the performance requirement and is not easy to fix without
changing the api and implementation so it is not DOM-based. The main problem with
RSF—which solves Enhydra xmlc’s performance problem—is the lack of compile time check
of rsf:id attributes the consequence of which is that validation of the templates can only
be performed at runtime. So RSF solved the performance problem but lost the compile
time checks.

The prototype meets the requirements with the exception of the externalization of the
specifications in the xml file and lack of scoping support for complex loops. The next
chapter will therefore examine how the specifications can be embedded in the java source
in an non-obtrusive and robust way.

Chapter 3

Annotations:
Embedding structured metadata

The prototype stores the specifications of the dynamic parts of the html templates in ex-
ternal xml documents. The purpose of this chapter is to find a method for embedding the
specifications in java source files.

3.1 Using comments

Before annotations were introduced in java 1.5, the typical method of embedding metadata
in java source was to create more or less structured comments. The main problem with
such ‘comments’ is that another language is introduced inside the java source and that the
java compiler and IDEs treat the ‘comments’ as comments.

This leads to severe drawbacks:
1. Unless the java compiler has hardcoded support for the embedded language (e.g.

Javadoc), the embedded code is not validated at compile time but simply ignored.
2. There is no support in the java runtime to access the embedded code. The comments

must be processed by an external tool which compiles the embedded code and stores
it elsewhere.

3. Simple comments are fragile. As it is ‘just a comment’, IDEs can’t detect that the
comment belongs to a method/field. When code is refactored, e.g. moved to an-
other class, the IDE doesn’t know that the comment should move together with the
method/field.

4. As java doesn’t provide any building blocks for creating the embedded language, it
tends to become complex to parse. On the surface Javadoc seems simple (‘it’s just
html’) but it requires a specialized parser as it extends html with special syntax1

for specifying arguments, exceptions, links, etc. and it is whitespace sensitive after
newlines. E.g.
/** @deprecated As of JDK 1.1, replaced by {@link #setBounds(int,int,int,int)} */

5. Since the comments annotate the following method/field in the java source and often
need to know e.g. the name of the method, the tool which processes the comments

1http://java.sun.com/j2se/javadoc/writingdoccomments/

15

CHAPTER 3. ANNOTATIONS: EMBEDDING STRUCTURED METADATA 16

must be able to parse a significant part of the java language syntax, thereby making
the tool much more complex. Whenever the java language is extended, the tool must
be extended before it can parse files using the new java constructs.

3.2 The annotation type

The main purpose of adding annotations to the java language was to formalize the specifica-
tion of metadata and to make them available at runtime.2 The purpose was not to replace
Javadoc or specify a language which could replace the Javadoc ‘html’ but to provide a
general base for building ‘simple’ blocks of metadata.

Java annotations are surprisingly simple and powerful as they define the metadata as
immutable object-oriented data structures by using (a subset of) java interfaces. A complete
description of java annotations is outside the scope of the project so this chapter only
provides a very compact introduction. For a full description, see [MF04] (recommended) or
[AGH06].

Annotations are defined using @interface and must not extend another annotation or
interface. The parameters are defined as methods with some restrictions:

• No parameters are allowed.
• It must not be generic, i.e. template type.
• A throws clause must not be specified.
• Allowed return types are primitive types (boolean, byte, int, long, float, double);

String; class (generic java.lang.Class or specific class); enum (i.e. value, not the class);
an annotation type; array of any of these.

• Default values can be provided using the default keyword. Only non-null constant
values are allowed.

Annotations are allowed to be defined without any methods and can as such be used as
simple markers—just like normal interfaces. It is allowed to apply annotations to the
annotation @interface, including the definition of the annotation itself.

Annotations can be made available at runtime, or only in .class files, or only in the
source. This is controlled by annotating the annotation with the @Retention ‘meta’ anno-
tation. The default is .class retention.

The @Target ‘meta’ annotation is used to specify if the annotation may be applied
to class, constructor, method, field, parameter, local variable, annotation and/or package
definitions. It is not possible to specify any other criteria, e.g. only methods which take no
arguments, or only public methods.

3.3 An example
L15 import java.lang.annotation.Target;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

2JSR 175: A Metadata Facility for the Java Programming Language:
http://jcp.org/en/jsr/detail?id=175

CHAPTER 3. ANNOTATIONS: EMBEDDING STRUCTURED METADATA 17

@Target(ElementType.METHOD) // may only be applied to methods
@Retention(RetentionPolicy.RUNTIME) // available at runtime using reflection
@interface MyAnnotation {

String value() default "";
boolean funny() default false;

}

class MyClassUsingAnnotations {

// all arguments specified.
@MyAnnotation(value = "DocumentName", funny = false)
void printPrintjobName() {

pw.print(job.getDocumentName());
}

@MyAnnotation(value = "SupportEmail") // default value is used for ’funny’
void printAdminEmail() {

pw.print("print@ruc.dk");
}

// This is semantically the same as the previous, as
// value=. . . is assumed if only a single value is specified.
@MyAnnotation("SupportEmail") void printAdminEmail() {

pw.print("print@ruc.dk");
}

@MyAnnotation // uses default values
void printUserFullname() {

pw.print("Michael Nyman");
}

}

3.4 Runtime access

Provided the annotations are marked with RetentionPolicy.RUNTIME, it is easy to use
reflection at runtime to access the specified annotations and the parameter values:

L16 public class DisplayMethodAnnotations {
public static void main(String[] args) throws Exception {

Class c = Class.forName(args[0]);
for (Method m : c.getMethods()) {

for (Annotation a : m.getAnnotations()) {
System.err.println(c.getName() + "." + m.getName() +

" has annotation: " + a.getName());
if (a instanceof MyAnnotation)

System.err.println(" is @MyAnnotation, value = <"

+ ((MyAnnotation)a).value() + ">");
}

}
}

}

CHAPTER 3. ANNOTATIONS: EMBEDDING STRUCTURED METADATA 18

3.5 Lists

Annotations are not allowed to be applied to the same class/method/field etc. twice. A
workaround for this problem is to create a container annotation (C) the single parameter
of which is a value the type of which is an array of the annotation (A). A container array
must be created for each annotation type as a generic list type isn’t allowed due to the
restrictions on parameter types:

L17 @interface A { int param(); }
@interface C { A[] value(); }
@C({@A(1), @A(2), @A(3)}) class Demo { . . . }

3.6 The non-null problem

To make an annotation parameter optional, a default value is specified. For method pa-
rameters, it is typical to use null to indicate default or non-specified values, however, null
is surprisingly not allowed as an annotation parameter value.3 A possible workaround for
complex types is to use a value which is distinct from semantically valid values for the pa-
rameter. For example, a css class name cannot be the empty string, so String cssName()
default "" is a solution. As kind of workarounds requires a non-used value, it is often not
usable for primitive types with a small set of values, e.g. boolean or byte. A workaround
for booleans is to use an enum for (true/false/not-specified).

3.7 Template specification example

This section demonstrates how annotations can be used as the specification format for a
html template system. Assume we want to display the user’s current printer. The output
should be something like:

L18 <div>Selected printer: HP LaserJet 4200</div>

Because the printer name must be addressable using simple DOM operations, the name
must be enclosed in a single html element, e.g. a element with an id attribute:

L19 <div>Selected printer: HP LaserJet 4200</div>

A servlet method provides the actual name of the printer:
L20 String getPrinterName() {

return "42-1-02-hp4250-drift-dat"; /* e.g. database query */
}

The specification that the content of the element should be replaced by the out-
put from the method can be made as an annotation directly on the method—providing a
high degree of locality for the implementation and the specification, unlike the xml-based
prototype:

L21 @ProvidesUnencodedElementContent(id = "PrinterName")
String getPrinterName() {

return "42-1-02-hp4250-drift-dat"; /* e.g. database query */
}

3The language reference [AGH06] which is the result of the JSR 175 process doesn’t state the reason for
disallowing null.

CHAPTER 3. ANNOTATIONS: EMBEDDING STRUCTURED METADATA 19

An annotation (@interface) is defined for each possible action for an element, e.g. element
content, attribute value or element conditional. The above annotation specify dynamic
generation of element content, but the name and parameter specification are verbose and
takes up quite some space. The definition of the annotations are an important part of the
template system’s design because it has a large impact on how easy it is to understand how
the servlet and the html template is tied together.

3.8 Conclusion

Annotations provide a method for embedding metadata which solve the major problems
that plague comment-based metadata.

Annotations are well suited to implement metadata which can be structured as (possible
nested) containers of simple types. For metadata which lends to parsing (e.g. SQL or html
snippets) it is difficult to use annotations beside embedding the data encoded in a String
parameter.

The prototype uses simple xml-based specifications which can be implemented using
annotations without any major problems because of the simple structure of the xml docu-
ments: They contain a flat list of elements with the data specified as the element’s name
and its attributes. The only problem is the need to be able to apply the same annotation
several times on the same method/field, but—as next chapter shows—this can be solved by
using array parameters instead of multiple annotations.

Annotations are therefore a very suitable replacement for xml as specification format
for the template system. It is important for the readability of the servlet code that the
annotation’s name and parameters are as concise as possible. The next chapter provides
the design of all the annotations in the template system.

The structure of the new system is very similar to that of the prototype (see page
8) as the only difference is the replacement of the xml specification file with the servlet
annotations. The implementation is very different, however, due to support of scopes and
of methods with return values and fields instead of only void methods—concepts which are
introduced in the next chapter.

servlet annotations

++

generated
java class

Compiler:

_ _ _�

�

�

�_ _ _
template

compiler

44

++
html template file

22

pcode

Runtime: servlet oo // generated
java class

oo //
_ _ _�

�

�

�_ _ _
template

runtime
// html output

pcode

66

Chapter 4

Design of template annotations

This chapter documents the design of the annotations in the new template system. Refer to
the next chapter for small examples of how the annotations are used in servlets.

The annotation based directives can be divided into 4 groups:
1. Specification of html element content which is generated by callbacks.
2. Specification of html element attributes which are generated by callbacks. This is

subdivided into simple attributes, attribute collections and sub-attributes.
3. Specification of flow control: conditionals and loops.
4. Specification of which html files should be compiled and global options for a file.

To avoid name clashing with 3rd party annotations, the annotation names are prefixed with
a single letter whereby resorting to use the full package name is avoided. The prefix is A for
plain attributes, S for sub-attributes, E for elements and T for general template attributes.

4.1 Targeting html elements

The first 3 groups all specify an action for one or more html elements. In order for the
declarations to be as terse as possible, an explicit declaration is not required whenever a
resonable default value can be determined—aka “convention over configuration”.

The elements are resolved by the following prioritization:

1. The id, className or tag annotation parameter in any combination. The default
parameter for the annotation must not be specified in this case.

The id parameter specifies the value of the element’s id attribute. The className
parameter specifies one of the names listed in the elements class attribute. The
tag parameter specifies the name of the element without angle brackets (e.g. ‘head’,
‘title’, ‘form’).

2. The default parameter of the annotation, which matches both id and class attributes
but generates a warning if it matches both kinds.

3. If applied to a method: The name of the method, stripped of an [a-z] + prefix, e.g.
“printSomething()” can refer to Has the same
id/class attribute behaviour as rule 2.

20

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 21

4. If applied to a field: The name of the field, e.g. “String userName;” can refer to Has the same id/class attribute behaviour as rule 2.

To support the prioritization, annotations which target html elements have 4 parameters
shown below, which unfortunately can’t be specified in a common super annotation as
annotations can’t derive from other annotations.

As described in section 3.5 on page 18 it is not possible to apply the same annotation
multiple times on the same method/field. The solution is to allow the same annotation to
target multiple id/class/tag names instead of a single name by declaring the parameters as
arrays.

L22 @Target({ElementType.METHOD, ElementType.FIELD})
@interface EHtml {

String[] value() default ""; // empty string means “not specified”
String[] id() default "";
String[] className() default "";
String[] tag() default "";

}

Since it isn’t possible to specificy any constraints in the annotation declaration for the
methods/fields they are applied to, it must be checked by the template compiler. Most of
the template annotations constrain the (return) type to a specific type and require methods
to take no arguments.

4.2 Annotation reference

Table 4.1 on page 22 lists all the 74 annotations.
As regards plain attribute annotations (i.e. those prefixed with A): It is not allowed to

have several instances of the same annotation to match the same element as an attribute’s
value must only be specified once. Attribute collections generate several attributes, so
neither @ASrc, @AWidth nor @AHeight must match the same element as @ASrcWidthHeight.

Multiple sub-attribute annotations (i.e. those prefixed with S) for the same element
must not specify the same sub-attribute name. This requirement for unique sub-attributes
corresponds to the requirement for unique plain attributes. If a sub-attribute is specified,
the corresponding plain attribute must not be specified, i.e. combining @SDisplay and
@AStyle is illegal.

Multiple annotations marked with the same numerical legend must not match the same
element. For example, combining @EWhile and @EIterate is illegal, whereas combining
@EWhile and @EIf is legal. The loop is only executed if @EIf returns true and it is not
retested inside the loop, i.e. the conditionals enclose the loops.

Multiple flow control annotations (*) are allowed for the same element. They are com-
bined using the boolean and operation.

Multiple @EZap annotations (**) are allowed to match the same element.

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 22

String attributes Integer attributes

Attribute Annotation Attribute Annotation
action @AAction colspan @AColSpan
align @AAlign rowspan @ARowSpan
class @AClass, tabindex @ATabIndex

@AClassPost
clear @AClear
coords @ACoords Boolean attributes
enctype @AEncType
for @AFor Attribute Annotation
height @AHeight checked @AChecked
href @AHref disabled @AEnabled
id @AId multiple @AMultiple
name @AName ismap @AIsMap
onblur @AOnBlur readonly @AReadOnly
onclick @AOnClick selected @ASelected
ondblclick @AOnDblClick
onfocus @AOnFocus
onkeydown @AOnKeyDown Attribute-collections
onkeypress @AOnKeyPress
onkeyup @AOnKeyUp named list @ACollection
onload @AOnLoad src+width+height @ASrcWidthHeight
onmousedown @AOnMouseDown
onmousemove @AOnMouseMove
onmouseout @AOnMouseOut Sub-attributes
onmouseover @AOnMouseOver
onmouseup @AOnMouseUp @SValue @SDisplayBlock1

onreset @AOnReset @SCollection @SDisplayInline1

onselect @AOnSelect @SHasClass @SDisplay1

onsubmit @AOnSubmit
onunload @AOnUnload
src @ASrc Element content
style @AStyle,

@AStylePost @EText2 @EHtml2

type @AType @ETextPre3 @EHtmlPre3

valign @AValign @ETextPost4 @EHtmlPost4

value @AValue @EReplace2+3+4

width @AWidth

Flow control

@EIf∗ @EWhile5

@EIfNot∗ @EScopingWhile5

@EContentIf∗ @EIterate5

Template compilation @EContentIfNot∗ @EScope5

@ETagIf∗

@TCompile @TIgnore @ETagIfNot∗

@TOverrides @EZap∗∗

Table 4.1: Annotation reference. See section 4.2 on page 21 for legends.

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 23

4.3 Template options

Compilation of an html template is triggered by applying the @TCompile annotation to a
class (inner or outer):

L23 @Target(ElementType.TYPE)
@interface TCompile {

String filename() default "";
String fragment() default "";
String tpname() default "";

}

filename specifies the name of the html file. The .html/.htm suffix may be omitted. The
default name is the name of the java source file. The html file must be located in
either the same directory as the java source or in a sub-directory named ‘templates’.

fragment specifies which part of the html template should be output. Usually it is the
complete html document (denoted by the default empty string), however, if e.g. only
the contents of the subtree <div id=PrinterInfo>...</div> is required, it can be
selected using fragment=“PrinterInfo” (see rule 2 on page 20).

tpname specifies the simple class name of the generated java class. The default value is
the simple name of the contained java class suffixed by ‘Tp’. If a sub-directory named
‘templatedata’ exist in the directory where the html source is located, the generated
source is saved in that package/directory. Otherwise it is saved in the same ‘package’
as the html source.

4.4 Generated element content

The @EHtml and @EText directives specify that the content of the elements is generated by
a ‘callback’ which can either be:

• a field of type String
• a method without arguments and which returns a String
• a void method without arguments (@EHtml only)

The difference between the two annotations is that @EHtml outputs the result String as-is,
whereas @EText html-encodes it. The two annotations correspond to MSIE-Javascript’s
Element.innerHTML and Element.innerText properties. The output completely replaces the
content specified in the html template, but not the tag or attributes. If the method returns
void, it is assumed that the method prints the content directly to the java.io.PrintWriter.

4.4.1 Pre- and postcontent

Instead of replacing the complete value, the system supports inserting output before and/or
after the element. This is useful for e.g. adding an <input type=hidden> to a <form>
element.

• @EHtmlPre and @ETextPre insert content before the template content
• @EHtmlPost and @ETextPost insert content after the template content

Both types can be specified on an element.

4.4.2 Complete replacement of element

Output from @EReplace replaces the complete element including tag and attributes.

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 24

4.4.3 Examples
L24 @EHtml void printPersonFullName() {

pw.print("Elliott Smith");
}

@EText String getPersonTitle() {
return "Student";

}

@EReplace("Logo") void printLogoImageTag() {
pw.print("");

}

@EHtmlPre(tag = "form") String sessionInfo() {
return "<input type=hidden name=session-id value=" + xxxx + ">";

}

4.5 Simple attributes

The value of simple attributes is generated in a way which is similar to the way element
content is generated by @EText. The value specified in the html template is completely re-
placed by the value provided by the callback. The template system generates the attribute
name, equal sign and single quotes, so the callback must only generate the value. A spe-
cialized annotation is provided for each common html attribute. For the ‘class’ and ‘style’
attributes, a post-content annotation is provided as the content of those two attributes are
lists.

4.5.1 String-based attributes

The string-based annotations are very similar to @EText and can be applied on String fields
and methods returning a String. Example:

L25 @Target({ElementType.METHOD, ElementType.FIELD})
@interface AValue {

String value() default ""; // element selection, empty string is “not specified”
String id() default "";
String className() default "";
String tag() default "";

}

4.5.2 Integer-based attributes

Integer-based attributes are handled like String-based attributes except that fields and
method return types must be int or Integer. No quotes are generated in the output html
as they are not needed for plain html.

4.5.3 Boolean attributes

Boolean attributes such as ‘checked’ for checkboxes are handled using boolean methods
or fields instead of generating output. The disabled attribute is handled as an inverted
enabled attribute to avoid having double negations in the programmer’s code (aka “I do not
want this to be disabled”). Fields and methods return types must be boolean or Boolean.

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 25

L26 @AChecked boolean selectedPrinterCheckbox() {
return p.id == 42;

}

@AEnabled boolean enabledPrinterCheckbox() {
return p.selectable();

}

4.6 Attribute collections

This type has 2 purposes:
• To support uncommon attributes for which no specialized annotation exists.
• To add several attributes using one method.

The latter is useful when the attributes are provided as pre-made by some other utility.
E.g. for image tags, a simple cache might return the src, width and height tags as one
string, e.g. “src=...width=200 height=152”. This is supported by @ASrcWidthHeight.
The programmer must generate the full attribute list, including attribute name and equal
sign.

Extra attributes can be added using @ACollection. The only mandatory argument
‘attributes’ is the list of attributes that the programmer adds and are therefore suppressed
by the template compiler to avoid having the attributes specified twice in the output.

L27 @Target({ElementType.METHOD, ElementType.FIELD})
@interface ACollection {

String value/id/className/tag element targeting quadruplets . . .
String[] attrNames(); // name of the attributes

}

4.7 Sub-attributes

For the style and class attributes, the system supports generating specific parts of the
attribute value instead of replacing the complete value. Sub-attributes for the style at-
tribute can be considered “attributes within attributes”. The class attribute is a list of
names, so it is a set rather than a map.

4.7.1 CSS class

It is often useful to control the display of html elements by adding/removing a css class
name from the element’s class attribute. The @SHasClass annotation takes the parameter
‘classes’ which is a list of those class names that are output if the method/field returns true.
The parameter name clashes somewhat with the ‘className’ parameter which specifies
which elements the annotation targets, however, this should not be too problematic as the
former is mandatory.

L28 @Target({ElementType.METHOD, ElementType.FIELD})
@interface SHasClass {

String value/id/className/tag . . .
String[] classes(); // name collision with className, but this parameter is mandatory

}

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 26

4.7.2 CSS style declarations

Adding/removing CSS classes doesn’t always provide the needed flexibility, or it adds too
many single-purpose CSS classes. More flexibility is obtained by directly modifying the
individual specifications in ‘style’ attributes. This is a more fine-grained approach than
replacing the complete attribute value using @AStyle as the template compiler keeps all
the other specifications, thereby keeping whatever the web designer might have added.
The control of style specifications is analog to the control of attributes in an element—
attributes within an attribute. Unlike element attributes, very few specialized annotations
are provided for the style attribute.

Non-specialized declarations

Use @SValue to generate a full declaration for a single style or multiple styles. The compiler
generates the name, colon and semicolon. The programmer only generates the value. If
multiple styles are specified, each of them is output using this sequence. Any definition of
that particular declaration in the html template is ignored, corresponding to simple element
attribute annotations such as @AValue.

L29 @Target({ElementType.METHOD, ElementType.FIELD})
@interface SValue {

String value/id/className/tag . . .
String name(); // css name of style

}

Use @SCollection to generate multiple or extra css style declarations. It is similar to
@ACollection for adding attributes to an element. It takes the argument ‘styles’ which is
the list of names of style declarations which the compiler should suppress.

L30 @Target({ElementType.METHOD, ElementType.FIELD})
public @interface ACollection {

String value/id/className/tag . . .
String[] attributes(); // name of the attributes which the callback generates

}

Display

The display annotations control the visibility of an element. The methods and fields that
they are applied to must be boolean.

@SDisplayBlock: depending on the return value of the field/method, a “display: block”
or “display: none” declaration is added to the style attribute. This overrides any
(default) display value assigned to the element using style sheets.

@SDisplayInline: like @SDisplayBlock but uses “display: inline”.

@SDisplay: if the method/field returns false, “display: none” is added. Otherwise, nothing
is added. This can be used to control the visibility of table rows and cells (provided
they are not hidden using style sheets) as MSIE fails to recognize the proper display
values of the elements, thus requiring browser-specific values for the visible state.

4.8 Conditionals

Conditionals enable the omission of the tag, the content or complete html subtrees in the
output. Inclusion is determined at runtime by the return value of a method or field value.

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 27

4.8.1 @EIf, @EIfNot and @EContentIf, @EContentIfNot

The @EIf and @EIfNot annotations handle omission of an element and all its children. The
seldom-used @EContentIf and @EContentIfNot directives omit the children of the element
only but not the tag itself.

The @EIf and @EContentIf annotations have the parameter ‘inverse’ which can
be used to negate the test, i.e. include the subtree if the method/field returns false.
The @EIfNot and @EContentIfNot annotations are a convenience notation for specify-
ing inverse = true and helps avoid the problem of not being able to apply the same
annotation to a method/field twice:

L31 // Not valid:
@EIf({"xx", "zz"}) @EIf(value = "yy", inverse = true) boolean invalidTest() { . . . }

// Valid:
@EIf({"xx", "zz"}) @EIfNot("yy") boolean validTest() { . . . }

4.8.2 @EZap

@EZap works like an @EIf which always returns false, except that the omission is done at
compile time and the subtree is completely ignored by the compiler similar to a pre-processor
directive. It can be applied to any method/field/class.

4.8.3 @ETagIf and @ETagIfNot

@ETagIf is complementary to @EContentIf: it controlls omitting the element tag instead
of the content. For the input <div>test</div> the output
of @ETagIf boolean testLink; is:

• if true: <div>test</div>
• if false: <div>test</div>

Like @EIfNot, @ETagIf has an inverse parameter and @ETagIfNot uses the negated test
condition.

4.9 Simple loops

Simple loops are handled using @EWhile which must be applied to a method which returns
a boolean. Each time the method returns true, the subtree is processed. It thus works
exactly like: while (method()) emitSubtree();

4.10 Scoping

Scoping is an important building block of advanced loops. A scope is created by using an
inner class when processing the subtree. Annotations on methods/fields in the parent class
are still used, so the scope can be considered a search path, however, the compiler will warn
if duplicates are found as they are very often a symptom of a programmer bug.

The @EScope annotation is made on an inner class. An instance of the class will be
created when the element is processed. Instantiation is done using either:

• by calling a method whose name is the name of the inner class and has the prefix ‘new’.
For an inner class named ‘PrinterRow’, the method must be named ‘newPrinterRow’,
must not take any arguments, and must return a ‘PrinterRow’.

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 28

• alternatively, it is instantiated using reflection.
The inner class is allowed to be static or non-static but must not be nested inside another
inner class. @EScope outputs the subtree once and can be considered a one-time loop.

4.11 Advanced loops

Advanced loops are based on scopes. An instance of the inner class is created for each
iteration of the loop. The annotations are:

• @EWhileScoped which can be applied to a boolean method. The inner class’ construc-
tor must not take any arguments.

• @EIterate which is applied to a method/field which returns an Iterator/Iterable. The
inner class’ constructor must take exactly one argument—the objects returned by the
iterator.

@EScope must not be specified on the inner class as it is implicit in the above looping
annotations because the scoping implementation is different for iteration.

The reason for having separate @EWhileScoped and @EIterate instead of overloading
@EWhile is a wish to make the programmer’s code more robust by avoiding a change in
semantics if the programmer by chance defines an inner class with a matching name.

The inner class can be specified using the ‘scope’ annotation parameter. If no scope pa-
rameter is specified, the inner class is found by using the name determined by:

1. if any element-targeting value for the annotation has been specified, ‘Emit’ is added
as a prefix.

2. else, if the annotation is specified on a field: the name of the field with first letter
uppercased and prefixed with ‘Emit’.

3. else, if the annotation is specified on a method: the name of the method with an
[a-z]+ prefix replaced by ‘Emit’.

4.12 Miscellaneous annotations

@TIgnore makes the compiler ignore all (other) annotations on the class/field/method. It
doesn’t have any parameters. This can be used as a simple commenting-out which is easier
to add than using /* ... */

@TOverride makes the compiler suppress warnings for annotations in sub-scopes which
override annotations in parent scopes with the same element-selecting parameters. As
overriding annotations are seldom intended in inner scopes, the compiler defaults to produce
a warning if one annotation shadows another one.

4.13 Build system

As the build system is outside the scope of this report, it will only be described very briefly
here. The system scans a directory subtree for .java files and tests if the files contain
@TCompile by simple text search (String.contains()) thus giving false positives for files
which only contain “@TCompile” inside a comment and not as a class annotation.

The compiler is executed for each matching file/class. If the class isn’t annotated with
@TCompile, it returns without doing anything. In addition to any generated java class,
the output is a list of dependent source files and their modification dates. The build
systems use this information in the following runs to quickly determine which files need

CHAPTER 4. DESIGN OF TEMPLATE ANNOTATIONS 29

recompilation—similar to a unix makefile. False positives are not treated differently by the
build system—they just don’t depend on any other files.

4.14 Summary

This chapter provides documentation of the annotations without examples of how they are
used to implement common constructs on web pages. The next chapter tests how usable
the design is to implement common web design patterns.

Chapter 5

Test of the design

This chapter tests how usable the design of the annotations is. The testing is performed
by implementing common web design patterns. The success criteria is concise servlet code,
especially that the annotations don’t reduce the maintainability and readability of the java
code.

A lot of books on Design Patterns [GHJV95] have been published for common programming
languages. For web design, the amount of material is unfortunately quite small and based
on user-level/usability patterns (e.g. [Wel]) rather than implementation patterns. Conse-
quently, the tests used in this chapter are based solely on patterns which I have identified
while implementing web applications. The patterns are described in terms of DOM elements
because the previous two systems which I’ve used1 are DOM based at the specification level.
The patterns are:

content substitution: A simple example is to output the real user’s name instead of
a placeholder in “<div>You’re logged in as John Doe</div>”. Sometimes only
parts of the content should be replaced.

Conditional: The ability to omit parts of the template. The parts are defined at compile
time, however the inclusion/omitting is determined at runtime. Some web-based shops
require customers to login before they can submit orders but allows the customers to
collect items in the shopping basket while not logged in. If the customer is not
logged in, the “You’re logged in as...” message <div> element must be omitted, i.e. a
conditional.

Tag conditional: Administrative users often have more links available on a page, e.g. to
edit information or to display internal company information for an item. For the
normal user the links must be omitted and only the plain text should be displayed.

Attribute value: Link destination address (), image source address (), input name/value, etc. are often determined at runtime.

Sub-attribute: Sometimes only a single name in a class attribute should be added (or
omitted) and sometimes the style attribute needs to be modified. Changing the
complete attribute value makes the template fragile with regard to modifications made
by the web designer after the initial development and deployment.

1Enhydra xmlc and the prototype.

30

CHAPTER 5. TEST OF THE DESIGN 31

Simple loop: Most web applications make database queries and display the results in a
table or list. For each query result, the template system should loop over a designated
sample row/list-item and emit the content for each query result, including performing
all the replacements etc. inside the sub-template.

Complex loop data: Some rows contain complex information, e.g. each row requires sep-
arate database queries or complex calculations. Sometimes summary views display
several pieces of information which are not combined into a single entity in the rest
of the application. It is therefore useful to be able to easily create a local model for
each row/list-item in template loops.

Multiple templates in the same servlet: The typical example is the ‘print friendly’
version of a page which cannot be created using only style sheets but must be created
using a different template. Usually such pages share almost all dynamic parts and
the required template is indicated by e.g. a ‘print=1’ URL argument which makes it
difficult to use a specific servlet for each template.

The inverse pattern is to use the same template in several servlets although two
completely different implementations for the same page is quite uncommon: I only
use this inverted pattern for very simple pages, e.g. ‘quick and dirty’ pages which are
not displayed to normal users but only to developers/admins, e.g. debug dumps. The
only dynamic parts of those simple pages are the title and a single content substitution
in the main body.

Partial template: Parts of AJAX based pages are updated using Javascript’s innerHTML.
When the page is designed, the sub-part is designed as an integral part of the complete
page rather than a separate template. This creates the need for generating only the
sub-part of a template without the overhead of generating the complete page and then
chopping off the unwanted (pre and post) parts.

5.1 Element content

The code below shows how to perform simple substitutions by creating a servlet that outputs
“You’re logged in as John Doe (jdoe).” using the real persons full name and username. The
two dynamic texts are enclosed in a so that they are separated from the rest of the
text, corresponding to how replacements are typically made using client-side Javascript.

L32 <div>You’re logged in as John Doe
(jdoe).</div>

The ‘servlet’ class is:
L33 @TCompile

public class DesignTest1 {
PrintWriter pw = new PrintWriter(System.out); // servlet output

@EHtml
void printPersonFullName() {

pw.print("Elliott Smith");
}

@EText
String username = "es";

CHAPTER 5. TEST OF THE DESIGN 32

void process() {
DesignTest1Tp tmpl = new DesignTest1Tp(this);
tmpl.emit(pw);

}

public static void main(String[] arg) {
DesignTest1 servlet = new DesignTest1();
servlet.process();
servlet.pw.flush();

}
}

The overhead of simulating a servlet takes up a large part of the java code: The declaration
of the PrintWriter and the main method. The process method has 2 lines: the first one
instantiates the template using the servlet instance with this specified as the root scope.
The scope is used by the template runtime to access the username field and to call the
printPersonFullName method. The second line calls the emit method which processes the
template and outputs the result to the PrintWriter passed as the argument.

Specifying the substitutions takes very little code. No parameters are needed for the
@EHtml annotations as the method and field names match the id attributes in the html
template. Combined with the @TCompile line to trigger the compilation, the total template
overhead is 3 simple lines of code—the 3 annotations.

5.2 Conditionals

This test extends the previous test by adding a conditional message which tells the user if
he/she has access to any printers:

L34 <div>You’re logged in as John Doe
(jdoe).</div>

<div id=NoPrinters1>You don’t have access to any printer</div>
<div id=NoPrinters2>Please ask your local system administrator to give you access.</div>
<div id=HasPrinters>Congratulation. You have access to at least one printer.</div>

The output should contain either the two <div id=NoPrintersX> messages or the <div
id=HasPrinters> message. The ‘servlet’ code is:

L35 @TCompile
public class DesignTest2 {

List<Printer> accessiblePrinters = . . .; // the list of printers available to the user
static class Printer { . . . }

// the interesting method:
@EIf
@EIfNot({"NoPrinters1", "NoPrinters2"})
boolean testHasPrinters() {

return !accessiblePrinters.isEmpty();
}

// the code below is the same as the previous test:
PrintWriter pw = new PrintWriter(System.out);
@EHtml void printPersonFullName() { pw.print("Elliott Smith"); }
@EText String username = "es";

void process() { new DesignTest2Tp(this).emit(pw); }
public static void main(String[] arg) { . . . }

}

CHAPTER 5. TEST OF THE DESIGN 33

The two annotations applied to the testHasPrinters method control the inclusion
of the texts. The @EIfNot annotation controls two different elements by specifying
an array parameter. Another solution is to use class=NoPrinters instead of id at-
tributes as this enables targeting several html elements by using a single parameter:
@EIfNot("NoPrinters").

5.2.1 Tag conditionals

Users with administration privileges often have more functionality available, e.g. links to
display technical information for a printer, whereas normal users only see the name of the
printer. For example, admin users should be presented with a link for display of adminis-
trative information for the printer:

L36 <div>Selected printer: HP LaserJet 4200</div>

while normal users should only have the plain printer name:

L37 <div>Selected printer: HP LaserJet 4200</div>

Creating this output using plain element conditionals requires two different element sub-
trees:

L38 <div>Selected printer:
HP LaserJet 4200 <!-- for admins -->
HP LaserJet 4200 <!-- for normal users -->

</div>

and the servlet needs to specify whether the <a> element or the element should be
output:

L39 @EIf("PrinterInfoLink") @EIfNot("PrinterName")
boolean testIsAdmin() {

return user.isAdmin();
}

@EText({"PrinterInfoLink", "PrinterName"})
String getPrinterName() {

return . . .;
}

This is tedious and damages the visual editing of the html template as the printer name is
displayed twice when the template is edited: Firstly as a link and secondly as plain text.
Fortunately, the @ETagIf annotation makes this much simpler and prettier. The improved
template does not contain the element but only the <a> element and the template
system suppresses the link tag (but not the content) if the user is not an admin. The
template is much simpler:

L40 <div>Selected printer: HP LaserJet 4200</div>

and the servlet just uses @ETagIf for the conditional:
L41 @ETagIf

boolean testPrinterInfoLink() {
return user.isAdmin();

}

@EText
String getPrinterInfoLink() {

return . . .;
}

CHAPTER 5. TEST OF THE DESIGN 34

The output is one of the two lines below. If testPrinterInfoLink() returns true, the first
line is output, otherwise the second line is output:

L42 <div>Selected printer: HP LaserJet 4200</div>
<div>Selected printer: HP LaserJet 4200</div>

This makes it much easier to add links for admin users without making the html template
or java servlet overly complex.

5.3 Attributes

Simple attributes like ‘value’ are very similar to element content using @EText, so this test
focuses on more complex attributes and sub-attributes. Assume the html snippet below is
placed inside a list item or a table row:

L43 <input type=radio class=PrinterRadio>
HP LaserJet

The requirements of the servlet are: The radio elements’ value and checked attribute
must be specified with the proper values for the printer. The needs the content set
and needs the style attribute updated so that it displays the name in gray if the printer is
unselectable. If the printer is a color printer, the span must have ColorPrinter specified
in the class attribute in addition to PrinterName.

The code for the servlet is:

L44 @TCompile
class DesignTest3 {

Printer p = . . .;
static class Printer { String name; int id; boolean selected, selectable, color; }

@AValue String nPrinterRadio() { // sets value=xxx in <input. . .>
return Integer.toString(p.id);

}

@AChecked boolean cPrinterRadio() { // might add ‘checked’ to <input. . .>
return p.selected;

}

@AEnabled boolean ePrinterRadio() { // might add ‘disabled’ to <input. . .>
return p.selectable;

}

@EText String tPrinterName() { // sets content of
return p.name;

}

@SValue(styles = "color") String cPrinterName() {
return p.selectable ? "black" : "gray"; // sets color=xxx inside ‘style’ attribute

}

@SHasClass(classes = "ColorPrinter") boolean pPrinterName() {
return p.color; // might add ColorPrinter to class=‘. . .’

}

// main-method etc. . .
}

CHAPTER 5. TEST OF THE DESIGN 35

Specifying attributes is just as easy as specifying the element content. Even complex sub-
attributes such as class and style are easily updated with dynamic values as the java pro-
grammer doesn’t have to take into account what else the web designer has specified.

The system is very robust when it comes to revising designs: Suppose that the
element didn’t have a style attribute in the initial design. If the java programmer is using
a template system which doesn’t support sub-attributes, he would typically generate the
complete style attribute value. When the web designer revises the design and adds the
font-size rule, it is simply ignored—which probably surprises the web designer. However,
as this template system supports sub-attributes, all style rules except color are kept as-is.
The same advantage exists for the class attribute: It doesn’t matter if the web designer
manually adds the ColorPrinter class to check the layout as the template system automat-
ically suppresses it—something which is quite difficult to obtain with macro-based template
systems. Only the rules which the programmer explicitly overrules are changed, thereby
keeping the suprises at a minimum: The template system is more robust for collaboration
development of web applications.

Another aspect worth noting is the seamless transition from simple getter methods
(e.g. tPrinterName) to more complex methods (e.g. cPrinterName) which dynamically
calculate the value. Unlike JSP and many other macro-based template systems, there
is no transitioning step when the value has to be calculated. Some might argue that
all those methods are overhead, and that it should be replaced with a specification of
which datastructures contain the desired values—often as an xml specification. My counter-
argument is that a non-java format has all the disadvantages of the prototype (and adds
a transition step when values have to be calculated) and would probably take almost the
same amount of ‘code’ anyway.

The only negative aspect is the need to manually convert the printer’s integer id value
to a String. This test shows that it makes sense to allow @AValue to be applied to a
method returning an integer—but not boolean or float or other simple types which must
typically be formatted.

5.4 Simple loops

The example below displays the list of printers available to the user:

L45 <div>You have access to the following printers:</div>
<table>

<tr class=PrinterRow>
<td class=PrinterName>My printer</td>

</tr>
</table>

The java code:
L46 @TCompile

class DesignTest4 {
List<Printer> accessiblePrinters = . . .;
static class Printer { String name; int id; }

int printerIndex = −1; // current list index into accessiblePrinters

@EWhile
boolean testPrinterRow() {

return ++printerIndex < accessiblePrinters.size();
}

CHAPTER 5. TEST OF THE DESIGN 36

@EText
String getPrinterName() {

return accessiblePrinters.get(printerIndex).name;
}

// PrintWriter, main-method, . . . as previous examples
}

This example shows that iterating thru simple structures requires very little code—just a
single method and list index. However, if the iteration was done using an Iterator, it
becomes slightly more complex:

L47 @TCompile(filename = "DesignTest4") // same html as previous example
class DesignTest5
{

List<Printer> accessiblePrinters = . . .;
static class Printer { String name; int id; }

Iterator<Printer> iter = . . .;
Printer currentPrinter;

@EWhile
boolean testPrinterRow() {

if (!iter.hasNext())
return false;

currentPrinter = iter.next();
return true;

}

@EText
String getPrinterName() {

return currentPrinter.name;
}

// PrintWriter, main-method, . . .
}

The class scope is polluted with variables used only in the loop scope: currentPrinter
and iter. If the page has several complex loops, the programmer easily ends up with many
temporary variables which are easy to mix up and therefore often have their named prefixed
with the name of the looop. This often makes the code harder to read due to overly long
variable names or names that are too easy to mistake for another name.

E.g. assume that (1) calculating the price for using the printer requires a temporary
variable and (2) the user can select a default printer. This would add a currentPrinterCost
variable for the former, and a selectedPrinter variable for the latter. The programmer can
by accident write currentPrinter instead of selectedPrinter without the java compiler
being able to catch the bug. If the variable is used before the loop, the variable is null and
results in a NullPointerException. If the variable is initialized, it can by luck point to the
correct printer and thus result in the “it works for me, so there is no bug” situation which
often leads to time consuming debug sessions.

The next section shows how scopes are able to solve this problem as they enable
currentPrinter to be renamed to p and currentPrinterCost to cost. The variables
are confined to the inner class which enables the java compiler to catch all usage of the
variables outside their valid scope.

CHAPTER 5. TEST OF THE DESIGN 37

5.5 Complex loop using scope

This example implements the same printer list as the previous example but uses an inner
class for scoping:

L48 @TCompile(filename = "DesignTest4") // see previous section for the html template
class DesignTest6 {

List<Printer> accessiblePrinters = . . .;
static class Printer { String name; int id; }

@EIterate
Iterable<Printer> iterPrinterRow() {

// List<x> implements Iterable<x>, so the list can be returned as-is.
// The declaration of the list (i.e. the field) could have been annotated,
// but a method is usable even if the field is declared in a superclass.
return accessiblePrinters;

}

class EmitPrintRow {
final Printer p;

EmitPrintRow(Printer p) {
this.p = p;

}

@EText
String getPrinterName() {

return p.name;
}

}

// main-method etc.
}

The above example shows the basic structure but is too simple to really show how much bet-
ter this approach is to handle complex loops. The currentPrinter variable is scoped to the
inner class which makes it easier to use a simple name: p. There is no servlet-programming
overhead to handle the iteration or instantiating the inner class besides declaring the class.

5.5.1 A more complex list

The following example tries to show the advantage of using inner classes when the data
needed for each list row are more complex. The html template is:

L49 <form>
<div>You have access to the following printers:</div>
<table>

<tr>
<th>Default
printer</th>
<th>Official name</th>
<th>Nickname</th>
<th>Prints left</th>

</tr>
<tr class=PrinterRow>

<td><input type=radio class=PrinterSelected name=selected></td>
<td class=PrinterName>rub-26-1-prt-2300</td>
<td><input type=text class=PrinterNickname value=’library’></td>

CHAPTER 5. TEST OF THE DESIGN 38

<td class=AccountStatus>42</td>
</tr>

</table>
<input type=submit value=’Update’>

</form>

The java code:
L50 class UserPrinterAccount {

// many-to-many relation between user and printer:
// user-specific information for a single printer
int balance;
String nickname; // null if no user-specific name for the printer.

}

class User {
String fullname, username;
UserPrinterAccount defaultPrinter;

}

@TCompile
class DesignTest7 {

User user = . . .;

@EIterate("PrinterRow") // see previous example
List<Printer> accessiblePrinters = . . .;

static class Printer { String name; int id; }

class EmitPrinterRow {
final Printer p;
final UserPrinterAccount acc; // null if no account

EmitPrinterRow(Printer p) {
this.p = p;
this.acc = findAccountUsingDatabaseQuery(p);

}

@AChecked
boolean isDefaultPrinter() {

return acc != null && acc.equals(user.defaultPrinter);
}

@AEnabled
boolean allowDefaultPrinter() {

return acc != null;
}

@EText
String getPrinterName() {

return p.name;
}

@AValue
String getPrinterNickname() {

return acc != null ? acc.nickname : null;
}

CHAPTER 5. TEST OF THE DESIGN 39

@AName
String namePrinterNickname() {

return "nick-" + p.id;
}

@EText
String getAccountStatus() {

return acc != null ? Integer.toString(acc.balance) : "-";
}

}
}

5.6 Specification of templates

As seen in the previous examples in this chapter, if only a single html file is used and its
basename is the same as the simple class name, a simple @TCompile is sufficient. If the
html template is named differently, a file name argument is needed:

L51 @TCompile(filename = "DesignTest4")
// this makes it use DesignTest4.html instead of DesignTest5.html

class DesignTest5 {
. . .

}

5.6.1 Template fragments

A common use of template fragments is ajax and self-refreshing <iframe>. Splitting the 2
parts into 2 separate html templates makes the visual design difficult. The example below
shows the user’s current list of print jobs. The template is designed as a plain single page
without any refreshing, however, the <table> part should be refreshed using an <iframe>.

L52 <div>You’re logged in as John Doe.</div>
<table id=JobTable>

<tr class=JobRow>
<td class=JobName>My document</td>

</tr>
</table>
<div>Some more information here.</div>

The servlet to implement the ‘outer’ page is:
L53 @TCompile(filename = "DesignTest8")

class DesignTest8Page {
@EHtml
void printPersonFullName() {

pw.print("Elliott Smith");
}

@EReplace
void replaceJobTable() {

pw.print("<iframe src=. . . width=. . . height=. . .></iframe>");
}

}

The replaceJobTable method replaces all of the <table> subtree with an <iframe> which
loads its content using the servlet below. This servlet implements the <iframe> and is very
similar to the example in section 5.5 on page 37:

CHAPTER 5. TEST OF THE DESIGN 40

L54 @TCompile(filename = "DesignTest8", fragment = "JobTable")
class DesignTest8IFrame {

static class PrintJob { String name; }

@EIterate("JobRow")
List<PrintJob> printjobs = . . .;

class EmitPrinterRow {
final PrintJob job;

EmitPrinterRow(PrintJob job) {
this.job = job;

}

@EText String getJobName() {
return job.name;

}
}

}

The template for the latter servlet emits only the <table> html fragment without any html
header section or <body> tag. The user can add such header (e.g. a doctype) when the
fragment is used for an <iframe>. When updating the page using Javascript’s innerHTML

(e.g. ajax), no such additional header must be added.
This example shows that it is easy to split a template into several parts so that the web

designer can design the page using visual tools and the web application can serve the parts
without needing to break the template into bits by a pre-processor. The overhead is very
small—only the declaration of the replaceJobTable method, an overhead which is difficult
to avoid as the <iframe> has to be defined somewhere.

5.7 Conclusion

The main conclusion is that using annotations has very little coding overhead and integrates
very tightly with the java code. The specification of the dynamic parts of the template is
located very close to the implementing method/field in the java class. The “convention over
configuration” approach has been very successful when it comes to reducing the overhead
of most specifications to a parameterless annotation, e.g. the method/field name is in most
cases reused for the html id/class attribute name instead of requiring yet another name.

The support for scopes using inner classes solves the problem of having the global scope
polluted with temporary variables—a significant benefit for complex pages that is obtained
with minimal overhead (as L50 on page 38 demonstrates).

The tight integration is also the main disadvantage as it might require two-step compiles
when annotated fields/methods are removed as the generated java class still refers to them.
The template system must therefore support some method of disabling/out-commenting
those parts of the generated code as the main java class cannot be compiled until the
generated class is updated—which requires the main class to be compiled, a catch-22.

The only minor usability problem which the test revealed was the need to manually
convert an int to a String in nPrinterRadio() in L44 on page 34. It seems like a good
idea to allow some—but probably not all—annotations to allow int/Integer in addition
to String. This must be considered for future versions of the template system.

Chapter 6

The compiler

Rather than performing the full processing of the template at runtime, the template system
is split into a compiler and a runtime part. This chapter describes the implementation of
the compiler.

6.1 Introduction

The compiler translates the html template into a format suitable for fast execution at
runtime. The input to the compiler is the (servlet) java class and the html template. The
output is a generated java class (for accessing the servlet at runtime) and pcode/string
table (for execution of the compiled DOM).

The compiler differs in two major ways from traditional compilers such as C and pascal
compilers:

1. The input consists of two files in different languages which have to be combined. It
is not a serial list of files in the same language.1

2. A significant part of traditional compilers is tokenizing and parsing the input into
abstract syntax trees. The template compiler uses the JVM to extract annotations
from java .class files and parses html files by using the JTidy2 library. This part
of the compiler is therefore only a few simple lines of code. The difference from
traditional compilers is not that this part doesn’t exist, but that the implementation
is so small and simple that the interesting parts of the compiler are in all the other
areas.

The compiler is implemented in java because the JVM provides easy access to the annota-
tions using reflection and because it makes it easier to support dynamical partial recompi-
lation of templates which are changed while the web application is running. This enables
the template system to allow the web designer to tinker with the layout without requiring
a compilation and restart of the server for each change.

1The java compiler (javac) reads two different kinds of input files (source and .class files), however,
they contain (almost) the same information (just ‘encoded’ differently) so javac matches the traditional
model. It is common for traditional compilers to generate several heterogenous output files (e.g. object files
and symbol files with debugging information).

2http://jtidy.sourceforge.net/

41

CHAPTER 6. THE COMPILER 42

6.1.1 Interfacing the build system

The build system calls the compiler with name of the input java class, the path of its source
file and the root directory of output files. The source path is used to load html templates.
The compiler returns a list of generated output files and dependent input files to the build
system. This enables the build system to detect when templates must be recompiled.

A more fine-grained detection is to check if the annotations and method/field declara-
tions have changed in the input java class. This has not been implemented as it still requires
loading the java class and parsing the annotations—which takes up a significant amount of
the total compilation time.

6.2 Phases

JTidy and the JVM introduce the first intermediate representations of the source files. The
compiler uses additional phases because it is difficult to generate the output formats directly
from these initial intermediate formats and because it is easier to implement the compiler
when it is broken into smaller well-defined chunks.

The figure below shows the input, intermediate and output formats represented by
square boxes. The labelled arrows show the processing phases:3

servlet
java

source

��

Compiler intermediates Compiler
output

servlet
java

bytecode

1 // JVM
classes

3 // scopes Abstract
pcode

5 // Serialized
pcode

html
file

2 // DOM

·
4

::

4 ##
abstract

java
class

6 // java
source

��
Phase

type:

1+2:

syntactic

3:

contextual

4:

codegen

5+6:

output

java
bytecode

�� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ���
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ��

�� _ _ _ _ _ _ ���
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��� _ _ _ _ _ _ ��

Phase 1 loads the compiled servlet class. Described in section 6.3 on page 43.

Phase 2 loads the html template into a DOM using JTidy. See section 6.4 on page 43.

Phase 3 creates the scope tree which represents the java class and some of its inner classes.
Described in section 6.5 on page 44.

Phase 4 generates the pcode and java class from the DOM and the scopes. Described in
section 6.6 on page 46.

3The output phases (5+6) would normally [ASU86] be called ‘codegen’ and phase 4 ‘intermediate code-
gen’. I’ve chosen to use the simple ‘output’ name for phases 5+6 as the phases have very little complexity
compared to phase 4, esp. compared to a x86 C-compiler’s very complex conversion of the intermediate
format into optimized machine-code.

CHAPTER 6. THE COMPILER 43

Phase 5 writes the serialized pcode from the abstract representation. This is a very simple
phase as it is just a manual serialization of a java class. Consequently, it is not
described further.

Phase 6 writes the java source file from the abstract representation. This is a simple phase
that is described in section 6.8 on page 50.

Phases 3 and 4 are described in greater detail because they are the complex and major
phases in the compiler. The reason for having phases 5 and 6 is that abstracting the output
formats simplifies phase 4 and because the format of the output files can’t be generated
serially, e.g. it is not possible to declare new global variables while writing the body of a
method and it is not possible to add import statements inside the class declaration either.

6.2.1 Implementation details

Phase 1 is implemented in the build system (see section 6.3 below).

Phase 2 is implemented in the dk.vitality.util.jat.translator.compiler.htmlLoader package.
Source: appendix H on page 101.

Phase 3 is implemented in the dk.vitality.util.jat.translator.compiler.application package.
Source: appendix F on page 73.

Phase 4 is implemented in the dk.vitality.util.jat.translator.compiler.codeGeneration pack-
age. Source: appendix G on page 92.

Phase 5 is a single method in the TemplateData class in the dk.vitality.util.jat.runtime.lib
package. Source: appendix D.3 on page 68.

Phase 6 is implemented by the ProgramEmit class and a single method in the Pro-
gramImpl class in the dk.vitality.util.jat.translator.compiler.codeGeneration pack-
age. Source: appendix G.9 on page 94 and appendix G.10 on page 98.

6.3 Loading the compiled servlet class, phase 1

This is an extremely simple phase as it consists of a Class.forName(...) call which loads
the class without initializing it (i.e. the static initializers are not run).

The build system scans the .java file hierarchy instead of a .class hierarchy because
some development tools writes the compiled classes directly to a .jar archive without
creating .class files. As a single .java source file contains the code for the outer class
and all its inner classes, the build system must use the modification date of this file for all
inner classes. The build system therefore needs to know which inner classes that a .java
file defines. Because the compiler needs the loaded java.lang.Class anyway, the build
system loads it—i.e. this stage is (currently) performed by the build system.

6.4 Parsing the html template, phase 2

The parsing of the html template is performed using the JTidy library which reads the html
file and produces a DOM tree as a result. The compiler clones the tree into a Xerces based

CHAPTER 6. THE COMPILER 44

implementation because JTidy uses its own very primitive, broken and non-conforming
DOM implementation.

After the html template has been loaded into a DOMtree, it is possible to manipulate it
by subclassing the main compiler class. This feature can be used to e.g.

• modify links (in e.g. <a>, <script>, <style>) to handle differences between the URL

design and the templates path hierarchy.
• change the layout by adding/removing/changing the html. This feature is used in

print.ruc.dk to add the site menus/logo so that the individual html template files
only contain the specific content part of the page. This makes it easier to change the
overall site design and keeps the size of the individual template files small.

6.5 Scopes, phase 3

The DOM tree is traversed in phase 4 to generate the output for each node in the tree. This
is similar to plain DOM-to-text serialization of html documents except that the template
compiler’s output is more complex: It consists of static text intermixed with callbacks
specified by the annotations that target the particular element. Because each element is
processed one-by-one, phase 4 must be able to quickly find the list of annotations that target
the current element. Phase 3 creates the scope tree: the datastructure which provides fast
lookups.

Each scope represents one java class. The root scope is the outermost java class. A sub-
scope is created for each inner class that:

• is annotated by @EScope
• or is referred to by the scope parameter of @EIterate/@EScopingWhile.
• or is annotated by @TCompile or encloses an inner class annotated by @TCompile.

Sub-scopes are not created for other inner classes to avoid making erroneous warnings.

Annotations can target elements using the id attribute, the class attribute and the tag
name in any combination (see section 4.1 on page 20). The scope contains 3 maps from the
id/class/tag value to the application of the annotation. If multiple id/class/tag names are
specified for an annotation, the annotation is added to the map for each specified name.

Finding the annotation-applications for an element is performed by 3 steps. The result
is the combined list of applications of all 3 steps:

• id attribute (if any): a simple lookup in the id map.
• class attribute is a white-space separated list of class names. A lookup in the class

map is performed for each name and the result is the combined list.
• tag name: a simple lookup in the tag map.

6.5.1 Application class hierarchy

The application of an annotation (i.e. specifying it on a specific field/method/. . .) is un-
fortunately called ‘an annotation’. Therefore the name ‘Application’ has been used in
the implementation to avoid overloading the ‘annotation’ name. The relationship annota-
tion/application corresponds to class/object in oop: an ‘application’ is an instance of an
annotation applied to a specific field/method/. . .

The JVM uses the java.lang.reflect.Annotation class to represent the application
of an annotation in a loaded class. The compiler encapsulates it in an Application class
because the compiler needs to keep track of annotations which are not used by the html

CHAPTER 6. THE COMPILER 45

template and to handle extracting the 4 element targeting parameters in one single place.4

A single application of an annotation can match several html elements. As each match
requires state information (e.g. pcode addresses which need to be patched), a match is
represented by an AbstractEmitter subclass.

A main design principle for implementing the compiler is to use OO to represent different
types of annotations (both value types and action types) instead of hardcoding it as one
huge phase 4 method. This results in the need for a class hierarchy for each of the 2 types:

1. One hierarchy which specializes on the value type of field/method the annotation is
applied to, e.g. boolean, int, String. This centralizes checks for field/method types,
generation of pcode to call the methods/fields at runtime and getting the sub-scope for
the element subtree (if any). This hierarchy primarily handles how the annotations are
applied and therefore ‘belongs’ to phase 3. The base class is Application which has
subclasses such as AbstractStringApplication and AbstractIntegerApplication.

2. One hierarchy which specializes on the action-type: how the annotation modifies the
html element (is it a conditional, does it generate the content, an attribute, a sub-
attribute, etc). This hierarchy is used by phase 4 to generate (emit) the output
for the element using strictly typed lists of actions for an element and makes the
central emitting methods small as all details are delegated to this class hierarchy.
The base class is AbstractEmitter. Most sub-classes are defined as inner-classes in
the Application that creates the emitter.

The scope must return the appropriate instance of the specialized Application class. Un-
fortunately, this cannot be done by the (pseudo) code below as java only permits to switch
on simple types:

L55 Application get(Annotation a) {
switch (a.annotationType()) { // annotationType() returns the @interface java.lang.Class

case EHtml: return new EHtmlApplication(. . .);
case EHtmlPre: return new EHtmlPreApplication(. . .);
case SDisplay: return new SDisplayApplication(. . .);
. . . .

}
}

The problem is solved by using the trick to generalize the switch statement to a map of
lambda expressions. However, java doesn’t support lambda expressions, so the factory
pattern is used instead:

L56 interface ApplicationFactory {
Application create(Annotation a);

}

class AnnotationApplicationMap { // simplified
Map<Class, ApplicationFactory> map = new . . .;

4Because annotations can’t inherit from interfaces, the extraction is performed using reflection as it
would otherwise require specialized code for each of the 70 template annotations!

CHAPTER 6. THE COMPILER 46

AnnotationApplicationMap() {
map.put(SDisplay.class, new ApplicationFactory() { // adds a ‘case’ factory

Application create(Annotation a) {
return new SDisplayApplication(a);

}
});
// many more factories here, one for each template annotation (70 total)

}

Application get(Annotation a) {
return map.get(a.annotationType()).create(a); // this executes the switch statement

}
}

This makes it easy and fast to obtain the specific Application instance for an instance of
the Annotation class returned by the JVM. The drawback is the tedious declaration of all
the factory classes.

6.5.2 Creating the scope tree

The scope tree is created by a recursive algorithm which processes the classes fields, methods
and inner classes using reflection. To be able to make proper warnings about overridden
annotations, the algorithm is split into 2 parts/phases so that all annotations on the class’
fields and methods are processed before the subscopes are processed. Parsing is started
with the root scope. The first part is the steps below:

1. If @TIgnore is present, return.
2. Recursively parse super classes.
3. Process annotations on fields not marked with @TIgnore.
4. Process annotations on methods not marked with @TIgnore.

The second part:
5. Post-process @EIterate and @EScopingWhile annotations by creating a sub-scope by

executing the full algorithm on the specified inner class.
6. For each inner class marked with @EScope but not with @TIgnore, create a sub-scope

by executing the full algorithm.

Finally, if the @TCompile is placed on an inner class, the Inner class and all its enclosing
classes are processed using the above algorithm, starting with the outermost class.

6.6 Code generation, phase 4

The code generation is performed as simple recursive processing of the DOM tree. Codegen
for an element is independent of (annotations for) its children and a parent element can
only change the processing of its children in two ways: (1) it may skip the children (e.g.
due to @EHtml) and (2) it may make the children use a subscope (e.g. due to @EScoped).
The recursion and main processing of the elements are performed by the TreeEmit class.
To manage the emitters, an instance of the ElementEmitters helper class is created for
each html element: The role of ElementEmitters is to find out what should be done for an
element, whereas the role of TreeEmit is to perform the actions.

ElementEmitters obtains a list of matching annotation Applications from the current
scope and each Application creates an instance of a subclass of AbstractEmitter to

CHAPTER 6. THE COMPILER 47

handle codegen for the element. The list below represents all the possible modifications of
an element at runtime. The emitter adds itself to the appropriate list or sets the singleton
instance. ElementEmitters checks that no conflicting emitters are added (e.g. @AStyle in
addition to @SDisplay) and that only one ‘element singleton’ is created for each type:

• list: element conditionals, e.g. @EIf
• list: tag conditionals: @ETagIf
• list: content conditionals: @EContentIf
• list: pre/post-content, e.g. @EHtmlPre
• element singleton: looping, e.g. @EWhile
• element singleton: replacing element: @EReplace
• element singleton: scope: @EScope
• element singleton: content, e.g. @EHtml
• list: simple attributes, e.g. @AValue
• list: post-content attributes, e.g. @AClassPost
• list: sub-attributes, e.g. @SDisplay

In addition to the above, ElementEmitter contains:
• the scope used for the children
• flag indicating if the id attribute must be suppressed: for elements inside loops, it

is suppressed to avoid duplicate definitions of the same id: They are inhibited for
children of html elements that use a loop emitter.

• flag indicating if the element should be processed at all: false iff it matched an @EZap.

6.7 The generated output

This section describes the generated output to provide a base for understanding the output
parts of the compiler, i.e. phases 5, 6 and (implementation parts of) phase 4.

The output class hierarchy (for implementing the two “abstract pcode” and “abstract java
class” data structures in the figure on page 42) is designed using the Facade Design Pattern
[GHJV95]. The reason/consequences are:

1. It provides the emitter classes with a higher-level interface which is much more suitable
for the emitters than the lower-level data structures.

2. Thus, a larger degree of separation between the emitter classes and the output data
structures.

3. It enables simple validation of the generated output (e.g. no undefined references).
4. However, the facade and implementation provide both the “abstract pcode” and “ab-

stract java class” data structures. Classes which implement the facade pattern and
provide a significant part of the implementation can easily evolve into the blob anti-
pattern5 over time.[BMMIM98]

5. The combination of both the output data structures enables automatic joining adja-
cent static output strings while still keeping the required splits due to e.g. callbacks.
An alternative approach is to add a phase which post-processes the pcodes and opti-
mizes adjacent strings. This requires analyzing all goto-destinations to detect strings
that can’t be joined.

Using the facade pattern enables simpler code in the emitter classes and removes the need
for a pcode-optimizing phase at the cost of making the high-level design of the classes less
clean.

5An anti-pattern is a pattern with a negative effect, e.g. spaghetti code.

CHAPTER 6. THE COMPILER 48

The facade is provided by the Program interface, whereas the ProgramImpl class provides
the implementation. The interface has methods for static text output, creating forward and
backward gotos, getting field values in the servlet class, calling methods in the servlet class
and entering/leaving scopes.

6.7.1 Generated java code

The generated class contains 4 major parts:

1. references to the scopes, i.e. class instances. The programmer passes the root-scope
instance as a parameter to the constructor. It also contains a reflection reference to
the constructor if the instance can’t be created directly (e.g. inner classes without
provided newMyClass() methods).

2. temporary variables for iterators, i.e. reference to the iterator and the current object.

3. an executeCallback(int idx) meta-method which contains the generated code to
call methods, access fields and create inner class instances in the programmer’s class.
Instead of generating a method for each function, it is dispatched thru a switch(idx)
statement so that the template runtime can execute the generated code using a single
method.

4. by inheritance from TemplateBase, it contains the 3 registers in the pcode runtime,
the variables: String stringValue; int intValue; boolean boolValue. Whenever the
executeCallback() method accesses a field or executes a non-void method, the result
is stored in the appropriate register variable. The boolValue variable is used for
conditional gotos.

With a few non-interesting parts removed, the generated code for the PrinterListNick ex-
ample (see L50 on page 38) is:

L57 class PrinterListNickTp extends TemplateBase
{

PrinterListNickTp(PrinterListNick scopeRoot) {
this.scopeRoot = scopeRoot;

}

void emit(HtmlPrintWriter pw) throws Exception {
if (v1cnstr == null) {

v1cnstr = PrinterListNick.EmitPrinterRow.class.getDeclaredConstructor(
PrinterListNick.class, Printer.class);

}
super.emit(pw);

}

// scopes:
final PrinterListNick scopeRoot;
PrinterListNick.EmitPrinterRow scopePrinterRow;

// callback fields for @EIterate Iterable iterPrinterRow() in PrinterListNick
Iterator<Printer> v1iter;
Printer v1item;
static Constructor<PrinterListNick.EmitPrinterRow> v1cnstr;

CHAPTER 6. THE COMPILER 49

void executeCallback(int idx) throws Exception {
switch (idx) {

case 0: stringValue = scopePrinterRow.getAccountStatus(); break;
case 1: stringValue = scopePrinterRow.getPrinterName(); break;
case 2: stringValue = scopePrinterRow.getPrinterNickname(); break;
case 3: stringValue = scopePrinterRow.namePrinterNickname(); break;

case 4:
{

Iterable<Printer> able = scopeRoot.iterPrinterRow();
if (able == null) {

throw new NullPointerException(
"PrinterListNick.iterPrinterRow returned null");

}
v1iter = able.iterator();
if (v1iter == null) {

throw new NullPointerException(
"PrinterListNick.iterPrinterRow.iterator() returned null");

}
}
break;

case 5: scopePrinterRow = v1cnstr.newInstance(scopeRoot, v1item); break;

case 6:
boolValue = v1iter.hasNext();
if (boolValue) {

v1item = v1iter.next();
} else {

v1item = null;
v1iter = null;

}
break;

case 7: scopePrinterRow = null; break;
case 8: stringValue = scopeRoot.getPersonFullName(); break;
case 9: stringValue = scopeRoot.getUsername(); break;
case 10: boolValue = scopeRoot.testHasPrinters(); break;
default: throw new Exception("Unknown callback idx = " + idx);

}
}

}

The cases in the switch statement are:
0..3: Call simple String xxx() methods and store the return value in stringValue which

is used by the pcode.
4: Call the @EIterate Iterable<Printer> iterPrinterRow() method to obtain an

Iterator<Printer>.
5: Create an instance of the EmitPrinterRow inner class using reflection as no instance-

creating method has been supplied and inner classes need the hidden ‘this’ argument
for its enclosing class.

6: Get the next object from the iterator, if any. Update boolValue with the state as it
is used in a conditional goto to the start of the loop. If no more objects are available,
references are nulled to catch erroneous usages of the variables outside the scope.

7: Null the reference to the scope created in case 5. This is executed when leaving the
scope.

CHAPTER 6. THE COMPILER 50

8..9: Call simple String xxx() methods.
10: Call testHasPrinters() to test if the subtree should/should not be included.

Section A.4 on page 59 shows how the callbacks are used from the pcode.

6.8 Serializing generated java source, phase 6

The input to the source generating class ProgramEmit is a list of the scopes/iterator info and
a list of the callbacks. It uses two utility classes: JavaClass which handles overall class defi-
nition (e.g. package imports, superclass and implemented interfaces) and JavaPrinter which
is a PrintWriter-like class which handles simple Line indention for blocks and if/for/while
statements.

Besides simple straight-forward codegeneration, ProgramEmit handles:
• detecting how to call static methods versus instance methods,
• declaration of and obtaining reflection constructors for inner classes
• declaration of variables for iterators, obtaining an Iterator<> from an Iterable<>,

and getting next object from the iterator.

6.9 Conclusion

Using the JVM to parse the java class (and JTidyto parse html) removed almost all the
complexity and code from the parsing phase of the compiler. After this description of the
compiler, the remaining work is to test the implementation for bugs.

Chapter 7

Implementation test

For completeness, this chapter describes how the template system is tested.

The general purpose of testing is to ensure something works. For compilers, the defini-
tion of ‘works’ includes both producing the correct output for valid input and to produce
warnings/error messages for problematic/invalid input. This means that the testing must
include tests for both valid and invalid input, and they must check both the generated
output and the generated warnings/error messages.

7.1 System tests versus unit tests

The template system consists of two parts: the compiler and the runtime. The testing
can be performed by testing either the individual parts (unit tests) or all parts combined
(system tests). The difference between the testing methods is only if they test the complete
system or a part of it, but not how the test is performed.

Unit testing simplifies testing and debugging as each individual part is examined without
the complexity that arises from interacting with other parts, and because it often is easier
to produce tests for a single unit than for a complete system. For the template system it is
easier to perform system testing as the runtime format (pcode and generated java class) is
not easy to validate. It is easy to provide basic validation of the generated java source as
it must be compilable by the java compiler, but errors at a higher level is difficult to test
for because many different runtime formats are valid. Some validation can be performed
by manual inspection of the generated java source.

Testing the full system (i.e. compiler and runtime) as a single entity is a much better
approach as both the input and the output are well defined (i.e. chapter 4). A system
test package consist of a java class (servlet), an input html file and files which contain
the expected html output and expected warnings/errors. Performing the test consists of
compiling the template (and the produced java class), running the servlet and checking that
the generated output matches the expected output.

7.2 Limitations of testing

The major problem with validating software using tests is the number of tests needed to
prove the software works correctly for all valid and invalid input. To test all permutations

51

CHAPTER 7. IMPLEMENTATION TEST 52

of inputs for a simple 32-bit integer adder, 264 different inputs must be tested. Even if 100
billion permutations were tested each second, it would take almost 6 years to run the tests.

The input to the template compiler is complex: It has 71 element targeting annota-
tions which can match none, a single or multiple html elements. The element targeting
annotations and the 2 compiler directive annotations (@TIgnore and @TOverrides) can be
specified on fields, methods and/or inner classes. Each of the 71 element targeting anno-
tations have at least 4 parameters. The huge number of permutations of the input (html
template and annotations) makes it impossible to perform testing of all valid and invalid
input. Only a very small subset can be tested.

7.3 Writing tests

There are two major methods for designing tests:

automatically generated tests. Input is generated by a (more or less) random generator
and the testing framework has to determine if the template compilers output is correct
for the actual input. Testing the correctness can be performed by (1) implementing
another template compiler inside the testing framework (expensive, and prone to the
same programmer bugs), or (2) only checking aspects of the output, e.g. if the compiler
reports errors and/or warnings.

Furthermore, a plain random generator produces input where all input permutations
are equally likely. As the number of important corner cases is very small compared
to the full input space, they are seldom tested, if at all. This means that most of the
performed tests are redundant. The solution is to use test generators which focus on
producing test inputs which tests the corner cases, but creating such test generators
is difficult.[AHLL06]

manually written tests. The implementor designs a number of tests, typically to cover
both simple cases (to provide easy testing and debugging of basic functionality) and
corner cases. Writing good test cases which covers important corner cases is surpris-
ingly difficult.[Mye79]

Often a combination of the above tests are used, e.g. manually written tests to ensure
correct operation for valid input and random tests to ensure the software doesn’t crash for
invalid input.

For the template system, it is difficult to use automatically generated tests to find a
significant number of bugs because it is difficult to implement a method to validate the
generated output. The implementation is tested using manually written tests due to the
limited time available for this project. Furthermore, only positive tests are implemented
(no testing of invalid input) and only the output html is tested (warnings are ignored).

The tests are written as typical web implementation design patterns similar to the exam-
ples presented in chapter 5. The first test is a very simple “Hello, World” to provide the most
basic debugging example. The other tests (moreContent, simpleAttributes, attributeCollec-
tions, hasClass, styles, conditional, conditionalContent, conditionalTag, simpleLoop, scope,
scopingWhile, iterate and splitTemplate) all focus on a major group of annotations and
often use several combinations of the annotations in one test to cover any problem with the
implementation of the annotation. The drawback of using complex group tests only is the
more difficult debugging when the output is incorrect and the lack of group interdependency
testing.

A sample test (including expected output) is provided in appendix B.

CHAPTER 7. IMPLEMENTATION TEST 53

7.4 Conclusion

System tests are well-suited for ensuring that the template compiler implements the design
correctly because the input and output files are well-defined and the translation does not
depend on anything else—there is no user interaction or network timing involved introducing
unpredictable or non-validable values and the expected output from the template compiler
is easy to specify. The major problems are (1) the difficulty in implementing good test cases,
and (2) the amount of time required for implementing the tests—something which is often
considered being a problem or waste of time—but which is probably more an indication of
the complexity of the tested software and of testing.

Chapter 8

Conclusion

This report tries to evaluate the suitability of using java annotations in an html template
system to specify the dynamic parts. The method used to answer the question is to build
such a system and to test it using common implementation patterns in web design.

The design test chapter concluded that annotations create very concise specifications
and the answer to the above question is therefore a strong acknowledgement of the suit-
ability. Furthermore, the implementation and unit test chapters show that it is possible
to implement such a compiler without major problems and that it actually works. The
only negative aspect compared to the prototype is the need for the template compiler to be
able to load the servlet class. This minor problem can be solved by using a dedicated class
loader or a bytecode library for reading the class definitions.

However, the material in this report only allows validation of the suitability from a
design-wise perspective: It can conclude the annotation-based system is very well-suited
for implementing the small web-design examples, however, it cannot tell if the system is
suitable for implementing complex pages nor if it is suitable for complex web applications.
As the real purpose of the tool is to be usable for such applications, answering the extended
question of suitability is therefore interesting.

After the compiler was implemented and before writing most of this report, I upgraded
two web applications from the xml-based prototype to the annotation-based system. One
web application1 consists of 1 very complex page and 2 derivations thereof (e.g. printfriendly
version). The other web application2 consists of 6 pages of which 3 are moderately complex
due to a lot of conditionals and 1 html email.

My experience is that the new system makes it much easier to maintain the pages:
Several dead methods were found because the annotations make it very obvious if a method
is used by the template system or not. Writing new servlets was easier too because the
template information is embedded in the source next to the implementation and because
screen real estate is not wasted on an xml document—a reducement from 3 to 2 open
windows is large in relative terms.

The only negative experience is the need for the 3-step procedure (see item 2.5 on page
12) when callbacks are removed. The problem is solveable by instantiating the template

1Display of rentable holiday homes in 6 languages. All pages are dynamically generated even though the
URLs seem to display static pages. Example of house 27093:
http://www.dancenter.dk/hus/27093 http://www.dancenter.de/haus/27093
http://www.dancenter.no/hus/27093 http://www.dancenter.se/hus/27093
http://www.dancenter.nl/huis/27093 http://www.dancenter.co.uk/house/27093

2Booking system for the rental system, including creditcard payment.

54

CHAPTER 8. CONCLUSION 55

using reflection so the servlet is not directly dependent on the generated template java class
and is therefore compilable even if the java source generated by the template system isn’t.

8.1 Further work

There are several areas where the template system can be improved:

1. The current system requires the callback methods to be public if the generated java
class is created in the ‘templatedata’ sub-package. Most of those methods should
only be accessible from the generated template class and java lacks C++’s friend
concept which is the simple solution to the problem. Circumventing the access re-
strictions by using reflection causes lack of (javac) compile-time check of methods and
the template compiler thus has to fully check the defined methods for type errors
to avoid unpleasant surprises at runtime. As the overhead of using reflection is un-
known, it should be measured—including the current compiler’s usage of reflection
for instantiating objects of inner classes.

2. The JTidy library is non-maintained and its parsing of html performs ‘optimizations’
which are not valid for a DOM-based template system.3 The whatwg4 working group
has produced a modern html parser5 which should be used as a replacement.

3. Due to the limited time available for this project, almost no Javadoc documentation
is provided as the time has been spent writing this report. The Javadoc low-level doc-
umentation is still needed, especially for the annotations and main compiler classes
as they are easily accessible in IDEs. Many java projects provide the low-level doc-
umentation only and have difficulty communicating the high-level concepts and easy
examples for beginners. This project provides high-level documentation only, which
isn’t a perfect solution either because it makes it difficult to dive into the compiler’s
low-level internals.

4. As seen in the opcode example (section A.4 on page 59) the pcode sometimes calls the
same boolean callback method several times. @ETagIf calls the method twice: once
for the open element tag and once for the close element tag. For non-trivial callback
methods, it would be a nice performance optimization to cache the returned value so
the method is only called once. However, this optimization is not simple as the user
expects the methods to be called for each iteration of a loop and whenever the scope
has changed. This can be implemented at runtime by caching the results and purging
the cache for each iteration or scope change, however, this method has quite an over-
head for simple callback methods. The better—but more complex implementation—is
to make the compiler detect when cached values are valid and when they have to be
purged.

5. Many larger commercial European websites are multi-language sites. The site used for
testing this template system provides all pages in 6 Germanic languages. This is im-
plemented by using a single html template for all translations and inserting the trans-
lated text at runtime by accessing a shared translation database. The annotation-
based template system requires each text needing translation to be put inside a <span

3E.g. removal of empty <div> elements.
4http://www.whatwg.org
5http://code.google.com/p/html5lib

CHAPTER 8. CONCLUSION 56

id=...> element and a @EText String getXXX() {...} method to access the trans-
lations.

As many European sites are only provided in Indo-European languages which do not
require a specialized layout due to e.g. right-to-left writing direction and therefore
allows using the same html template for all languages, an improvement of the template
system is a way of providing translated texts without the need for a manually written
java method.

A solution to this problem requires design of the html macro and of a generic interface
to translation systems. One possible design of the html macro is to use id attribute
values which start with a double underscore and use the rest as the (relative path)
name of the text in the translation system.

Appendix A

The P-code format

A RISC-style 32-bit integer with fixed-size encoding of command and parameter number
is used to simplify the pcode encoding. The least-significant 4 bits contain the command
number and the remaining 28 bits the parameter value.

A.1 Opcode enum

The Opcode enum handles encoding and decoding the format:
L58 enum Opcode

{
PRINT STRINGTABLE, // see “Opcode description” section below
PRINT STRING VAR,
PRINT HTML STRING VAR,
PRINT ATTR STRING VAR,
PRINT INT VAR,
CALLBACK,
GOTO, CONDITIONAL GOTO,
NEGATE,
RETURN;

final static int OPCODE BITS = 4;
final static int OPCODE MASK = (1 << OPCODE BITS) − 1;

int encoded() {
return ordinal();

}

int encoded(int param) {
return ordinal() | (param << OPCODE BITS);

}

static Opcode decodeOpcode(int encoded) {
return opcodes[encoded & OPCODE MASK];

}
private static Opcode[] opcodes = values();

static int decodeParam(int encoded) {
return encoded >>> OPCODE BITS;

}
}

57

APPENDIX A. THE P-CODE FORMAT 58

A.2 Opcode execution

The execution of the pcodes is handled by TemplateBase which the generated java source
inherits from. See L57 on page 48 for the void executeCallback(int idx) method:

L59 abstract class TemplateBase
{

String stringValue;
int intValue;
boolean boolValue;
. . .

void emit(HtmlPrintWriter pw) throws Exception
{

final int[] opcodes = . . .;
final String[] strings = . . .;
int pc = 0;
while (true) {

int encoded = opcodes[pc];
Opcode opcode = Opcode.decodeOpcode(encoded);
int param = Opcode.decodeParam(encoded);
pc++;
switch (opcode) {

case PRINT STRINGTABLE: pw.print(strings[param]); continue;
case PRINT STRING VAR: pw.print(stringValue); continue;
case PRINT HTML STRING VAR: pw.htmlEncode(stringValue); continue;
case PRINT ATTR STRING VAR: pw.attrEncode(stringValue); continue;
case PRINT INT VAR: pw.print(intValue); continue;
case CALLBACK: executeCallback(param); continue;
case GOTO: pc = param; continue;
case CONDITIONAL GOTO: if (boolValue) pc = param; continue;
case NEGATE: boolValue ^= true; continue;
case RETURN: return;
default:

throw new TemplateException(
"Invalid opcode = " + encoded + " at addr = " + pc);

}
}

}

abstract void executeCallback(int idx) throws Exception;
}

A.3 Opcode description

print stringtable prints a string from the stringtable indexed by the parameter. The
string is printed as-is without encoding as it contains html.

print string var prints the stringValue field without encoding. This is used for e.g.
@EHtml String xxx() methods

print html string var prints the stringValue field using normal html encoding (e.g. ‘<’
is converted to ‘<’, newlines to ‘
’, 16-bit characters is encoded as ‘Ӓ’).
The @EHtml String getUsername() method results in a callback-opcode followed by
print html string var.

APPENDIX A. THE P-CODE FORMAT 59

print attr string var is similar to print html string var, but does not encode newlines
as ‘
’. Used for @AName String namePrinterNickname().

print int var prints ‘intValue’. Used for integer attributes, e.g. @AColSpan.

callback calls the void executeCallback(int idx) method, thereby executing the dy-
namically generated code. Used whenever the class has to access the programmers
java class.

goto changes the program-counter to the address specified in the parameter.

conditional goto changes the program-counter if boolValue is true. The variable is set
by executing a callback for a method/field returning a boolean, e.g. for @EIf and
@EWhile.

negate inverts the value of boolValue, which is used for inverted conditional goto. An
alternative approach is to have an inverted conditional goto instead of negate.

return stops execution of the program. It is only emitted once and only as the last pcode.
It is redundant as the loop could return when the end of the pcode array was reached,
but using an explicit opcode as an sentinel ensures an exception if the array is only
partially generated or contains errors such as goto addresses beyond the end of the
array.

A.4 Opcode example

The generated pcode for the PrinterListNick example is:

address / opcode(param) stringtable text / callback
0 print stringtable(0) <html>\n<head>\n<title></title>\n</head>...
1 callback(8) stringValue = scopeRoot.getPersonFullName();

2 print html string var
3 print stringtable(1) (

4 callback(9) stringValue = scopeRoot.getUsername();

5 print html string var
6 print stringtable(2)).</div>\n
7 callback(10) boolValue = scopeRoot.testHasPrinters();

8 conditional goto(10)
9 print stringtable(3) \n<div id=NoPrinters>You don’t have ac...

10 callback(10) boolValue = scopeRoot.testHasPrinters();

11 negate
12 conditional goto(34)
13 print stringtable(4) \n<form action=. class=HasPrinters>\n<d...
14 callback(4) get iterator from iterPrinterRow()
15 goto(31)
16 callback(5) create new instance of EmitPrinterRow
17 print stringtable(5) \n<tr class=PrinterRow>\n<td><input cla...

18 callback(1) stringValue = scopePrinterRow.getPrinterName();

19 print html string var

APPENDIX A. THE P-CODE FORMAT 60

20 print stringtable(6) </td>\n<td><input class=PrinterNicknam...

21 callback(3) stringValue = scopePrinterRow.namePrinterNickname();

22 print attr string var
23 print stringtable(7) ’ type=text value=’

24 callback(2) stringValue = scopePrinterRow.getPrinterNickname();

25 print attr string var
26 print stringtable(8) ’></td>\n<td class=AccountStatus>

27 callback(0) stringValue = scopePrinterRow.getAccountStatus();

28 print html string var
29 print stringtable(9) </td>\n</tr>\n
30 callback(7) scopePrinterRow = null;

31 callback(6) get next object from iterator
32 conditional goto(16)
33 print stringtable(10) </table>\n<input type=submit value=Upd...

34 print stringtable(11) </body>\n</html>\n
35 return

Size of pcode is 36 * sizeof(int) = 144 bytes. Total size of the 12 strings in the stringtable
is 681 chars.

A.5 Saving pcode

The pcode and stringtable is saved and loaded using the TemplateData class. It is saved
in a separate binary file instead of being embedded in the generated java source to support
dynamic recompiling of the template and because the java bytecode format is very space-
inefficient for initializing arrays.

Appendix B

System test example

This example tests the @ETagIf annotation. The html template is:

L60 <html>
<body>

<div>Roskilde University</div>
<div>Goto: No place in

particular.</div>
</body>
</html>

The java code is:
L61 package dk.vitality.util.jat.junit.tests.iConditionalTag;

import dk.vitality.util.jat.junit.lib.TestBase;
import dk.vitality.util.jat.runtime.annotation.flowControl.ETagIf;
import dk.vitality.util.jat.runtime.annotation.global.TCompile;

@TCompile
public class TestConditionalTag extends TestBase {

protected void emitTemplate() throws Exception {
new TestConditionalTagTp(this).emit(pw);

}
@ETagIf public boolean testKeeper() { return true; }
@ETagIf public boolean wantsKeeper() { return true; }
@ETagIf public boolean testDropMe() { return false; }
@ETagIf public boolean failedDropMe() { return true; }

}
The first two methods match the id=Keeper element and the last two methods match the
id=DropMe element. Multiple matches are used to test that the compiler correctly handles
nested conditionals.

The TestBase class provides JUnit encapsulation such as collecting the output written
to pw (a PrintWriter instance) and compares it to an html file which contains the expected
output.

The tag of the first element is included in the output as both methods returns true while
the tag of the second element is omitted as the third method (testDropMe) returns false.
The expected output is:1

1JTidy adds an empty title tag if no title was specified in the output. The doctype is omitted for brevity.

61

APPENDIX B. SYSTEM TEST EXAMPLE 62

L62 <html>
<head>
<title></title>
</head>
<body>
<div>Roskilde University</div>
<div>Goto: No place in particular.</div>
</body>
</html>

Bibliography

[AGH06] Ken Arnold, James Gosling, and David Holmes.
The JavaTM Programming Language, Fourth Edition. Addison-Wesley, 2006.

[AHLL06] James H. Andrews, Susmita Haldar, Yong Lei, and Felix Chun Hang Li. Tool
support for randomized unit testing. In RT ’06: Proceedings of the 1st in-
ternational workshop on Random testing, pages 36–45, New York, NY, USA,
2006. ACM Press.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles,
Techniques and Tools. Addison-Wesley, 1986.

[BDKZ93] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. Soft-
ware complexity and maintenance costs. Commun. ACM, 36(11):81–94, 1993.

[BDP06] Manfred Broy, Florian Deissenboeck, and Markus Pizka. Demystifying main-
tainability. In WoSQ ’06: Proceedings of the 2006 international workshop on
Software quality, pages 21–26, New York, NY, USA, 2006. ACM Press.

[BMMIM98] William H. Brown, Raphael C. Malveau, Hays W. ‘Skip’ McCormick III, and
Thomas J. Mowbray. AntiPatterns. Refactoring Software, Architectures, and
Projects in Crisis. John Wiley & Sons, Inc., 1998.

[BP97] Ira D. Baxter and Christopher W. Pidgeon. Software change through design
maintenance. In Proceedings of the IEEE Conference on Program Compre-
hension, pages 250–259. IEEE Press, 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1995.

[LC00] Young Lee and Kai H. Chang. Reusability and maintainability metrics for
object-oriented software. In ACM-SE 38: Proceedings of the 38th annual on
Southeast regional conference, pages 88–94, New York, NY, USA, 2000. ACM
Press.

[LST78] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of applica-
tion software maintenance. Commun. ACM, 21(6):466–471, 1978.

[MF04] Brett McLaughlin and David Flanagan.
Java 5.0 Tiger. A Developer’s NotebookTM. O’Reilly, 2004.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc.,
1979.

[Wel] Martijn van Welie. Web design patterns. http://www.welie.com/patterns/.

63

